Line (geometry)

Last updated
The red and blue lines on this graph have the same slope (gradient); the red and green lines have the same y-intercept (cross the y-axis at the same place). FuncionLineal01.svg
The red and blue lines on this graph have the same slope (gradient); the red and green lines have the same y-intercept (cross the y-axis at the same place).
A representation of one line segment. 1D line.svg
A representation of one line segment.

In geometry, the notion of line or straight line was introduced by ancient mathematicians to represent straight objects (i.e., having no curvature) with negligible width and depth. Lines are an idealization of such objects, which are often described in terms of two points (e.g., ) or referred to using a single letter (e.g., ). [1] [2]

Contents

Until the 17th century, lines were defined as the "[...] first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...] will leave from its imaginary moving some vestige in length, exempt of any width. [...] The straight line is that which is equally extended between its points." [3]

Euclid described a line as "breadthless length" which "lies equally with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry).

In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic geometry, a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation, but in a more abstract setting, such as incidence geometry, a line may be an independent object, distinct from the set of points which lie on it.

When a geometry is described by a set of axioms, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in differential geometry, a line may be interpreted as a geodesic (shortest path between points), while in some projective geometries, a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.

Definitions versus descriptions

All definitions are ultimately circular in nature, since they depend on concepts which must themselves have definitions, a dependence which cannot be continued indefinitely without returning to the starting point. To avoid this vicious circle, certain concepts must be taken as primitive concepts; terms which are given no definition. [4] In geometry, it is frequently the case that the concept of line is taken as a primitive. [5] In those situations where a line is a defined concept, as in coordinate geometry, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the axioms which they must satisfy.

In a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance, it is possible to provide a description or mental image of a primitive notion, to give a foundation to build the notion on which would formally be based on the (unstated) axioms. Descriptions of this type may be referred to, by some authors, as definitions in this informal style of presentation. These are not true definitions, and could not be used in formal proofs of statements. The "definition" of line in Euclid's Elements falls into this category. [6] Even in the case where a specific geometry is being considered (for example, Euclidean geometry), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.

In Euclidean geometry

When geometry was first formalised by Euclid in the Elements , he defined a general line (straight or curved) to be "breadthless length" with a straight line being a line "which lies evenly with the points on itself". [7] These definitions serve little purpose, since they use terms which are not by themselves defined. In fact, Euclid himself did not use these definitions in this work, and probably included them just to make it clear to the reader what was being discussed. In modern geometry, a line is simply taken as an undefined object with properties given by axioms, [8] but is sometimes defined as a set of points obeying a linear relationship when some other fundamental concept is left undefined.

In an axiomatic formulation of Euclidean geometry, such as that of Hilbert (Euclid's original axioms contained various flaws which have been corrected by modern mathematicians), [9] a line is stated to have certain properties which relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point. [10] In two dimensions (i.e., the Euclidean plane), two lines which do not intersect are called parallel. In higher dimensions, two lines that do not intersect are parallel if they are contained in a plane, or skew if they are not.

Any collection of finitely many lines partitions the plane into convex polygons (possibly unbounded); this partition is known as an arrangement of lines.

In Cartesian coordinates

Lines in a Cartesian plane or, more generally, in affine coordinates, are characterized by linear equations. More precisely, every line (including vertical lines) is the set of all points whose coordinates (x, y) satisfy a linear equation; that is,

where a, b and c are fixed real numbers (called coefficients) such that a and b are not both zero. Using this form, vertical lines correspond to equations with b = 0.

One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero.

There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form. If the constant term is put on the left, the equation becomes

and this is sometimes called the general form of the equation. However, this terminology is not universally accepted, and many authors do not distinguish these two forms.

These forms (see Linear equation for other forms) are generally named by the type of information (data) about the line that is needed to write down the form. Some of the important data of a line is its slope, x-intercept, known points on the line and y-intercept.

The equation of the line passing through two different points and may be written as

.

If x0x1, this equation may be rewritten as

or

Parametric equations

Parametric equations are also used to specify lines, particularly in those in three dimensions or more because in more than two dimensions lines cannot be described by a single linear equation.

In three dimensions lines are frequently described by parametric equations:

where:

x, y, and z are all functions of the independent variable t which ranges over the real numbers.
(x0, y0, z0) is any point on the line.
a, b, and c are related to the slope of the line, such that the direction vector (a, b, c) is parallel to the line.

Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector.

As a note, lines in three dimensions may also be described as the simultaneous solutions of two linear equations

such that and are not proportional (the relations imply ). This follows since in three dimensions a single linear equation typically describes a plane and a line is what is common to two distinct intersecting planes.

Slope-intercept form

In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form :

where:

m is the slope or gradient of the line.
b is the y-intercept of the line.
x is the independent variable of the function y = f(x).

The slope of the line through points and , when , is given by and the equation of this line can be written .

Normal form

The normal form (also called the Hesse normal form, [11] after the German mathematician Ludwig Otto Hesse), is based on the normal segment for a given line, which is defined to be the line segment drawn from the origin perpendicular to the line. This segment joins the origin with the closest point on the line to the origin. The normal form of the equation of a straight line on the plane is given by:

where is the angle of inclination of the normal segment (the oriented angle from the unit vector of the x-axis to this segment), and p is the (positive) length of the normal segment. The normal form can be derived from the standard form by dividing all of the coefficients by

Unlike the slope-intercept and intercept forms, this form can represent any line but also requires only two finite parameters, and p, to be specified. If p > 0, then is uniquely defined modulo 2π. On the other hand, if the line is through the origin (c = p = 0), one drops the c/|c| term to compute and , and it follows that is only defined modulo π.

In polar coordinates

In a Cartesian plane, polar coordinates (r, θ) are related to Cartesian coordinates by the equations

In polar coordinates, the equation of a line not passing through the origin—the point with coordinates (0, 0)—can be written

with r > 0 and Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment.

It may be useful to express the equation in terms of the angle between the x-axis and the line. In this case, the equation becomes

with r > 0 and

These equations can be derived from the normal form of the line equation by setting and and then applying the angle difference identity for sine or cosine.

These equations can also be proven geometrically by applying right triangle definitions of sine and cosine to the right triangle that has a point of the line and the origin as vertices, and the line and its perpendicular through the origin as sides.

The previous forms do not apply for a line passing through the origin, but a simpler formula can be written: the polar coordinates of the points of a line passing through the origin and making an angle of with the x-axis, are the pairs such that

As a vector equation

The vector equation of the line through points A and B is given by (where λ is a scalar).

If a is vector OA and b is vector OB, then the equation of the line can be written: .

A ray starting at point A is described by limiting λ. One ray is obtained if λ ≥ 0, and the opposite ray comes from λ ≤ 0.

In higher dimensions

In three-dimensional space, a first degree equation in the variables x, y, and z defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes. More generally, in n-dimensional space n−1 first-degree equations in the n coordinate variables define a line under suitable conditions.

In more general Euclidean space, Rn (and analogously in every other affine space), the line L passing through two different points a and b (considered as vectors) is the subset

The direction of the line is from a (t = 0) to b (t = 1), or in other words, in the direction of the vector b  a. Different choices of a and b can yield the same line.

Collinear points

Three points are said to be collinear if they lie on the same line. Three points usually determine a plane, but in the case of three collinear points this does not happen.

In affine coordinates, in n-dimensional space the points X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn), and Z = (z1, z2, ..., zn) are collinear if the matrix

has a rank less than 3. In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero.

Equivalently for three points in a plane, the points are collinear if and only if the slope between one pair of points equals the slope between any other pair of points (in which case the slope between the remaining pair of points will equal the other slopes). By extension, k points in a plane are collinear if and only if any (k–1) pairs of points have the same pairwise slopes.

In Euclidean geometry, the Euclidean distance d(a,b) between two points a and b may be used to express the collinearity between three points by: [12] [13]

The points a, b and c are collinear if and only if d(x,a) = d(c,a) and d(x,b) = d(c,b) implies x = c.

However, there are other notions of distance (such as the Manhattan distance) for which this property is not true.

In the geometries where the concept of a line is a primitive notion, as may be the case in some synthetic geometries, other methods of determining collinearity are needed.

Types of lines

In a sense, [14] all lines in Euclidean geometry are equal, in that, without coordinates, one can not tell them apart from one another. However, lines may play special roles with respect to other objects in the geometry and be divided into types according to that relationship. For instance, with respect to a conic (a circle, ellipse, parabola, or hyperbola), lines can be:

In the context of determining parallelism in Euclidean geometry, a transversal is a line that intersects two other lines that may or not be parallel to each other.

For more general algebraic curves, lines could also be:

With respect to triangles we have:

For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals.

For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line.

Parallel lines are lines in the same plane that never cross. Intersecting lines share a single point in common. Coincidental lines coincide with each other—every point that is on either one of them is also on the other.

Perpendicular lines are lines that intersect at right angles.

In three-dimensional space, skew lines are lines that are not in the same plane and thus do not intersect each other.

In projective geometry

In many models of projective geometry, the representation of a line rarely conforms to the notion of the "straight curve" as it is visualised in Euclidean geometry. In elliptic geometry we see a typical example of this. [15] In the spherical representation of elliptic geometry, lines are represented by great circles of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean planes passing through the origin. Even though these representations are visually distinct, they satisfy all the properties (such as, two points determining a unique line) that make them suitable representations for lines in this geometry.

Extensions

Ray

Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray. [16] Intuitively, a ray consists of those points on a line passing through A and proceeding indefinitely, starting at A, in one direction only along the line. However, in order to use this concept of a ray in proofs a more precise definition is required.

Given distinct points A and B, they determine a unique ray with initial point A. As two points define a unique line, this ray consists of all the points between A and B (including A and B) and all the points C on the line through A and B such that B is between A and C. [17] This is, at times, also expressed as the set of all points C such that A is not between B and C. [18] A point D, on the line determined by A and B but not in the ray with initial point A determined by B, will determine another ray with initial point A. With respect to the AB ray, the AD ray is called the opposite ray.

Ray Ray (A, B, C).svg
Ray

Thus, we would say that two different points, A and B, define a line and a decomposition of this line into the disjoint union of an open segment (A, B) and two rays, BC and AD (the point D is not drawn in the diagram, but is to the left of A on the line AB). These are not opposite rays since they have different initial points.

In Euclidean geometry two rays with a common endpoint form an angle.

The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field. On the other hand, rays do not exist in projective geometry nor in a geometry over a non-ordered field, like the complex numbers or any finite field.

Line segment

A line segment is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are coplanar and either do not intersect or are collinear.

Geodesics

The "shortness" and "straightness" of a line, interpreted as the property that the distance along the line between any two of its points is minimized (see triangle inequality), can be generalized and leads to the concept of geodesics in metric spaces.

See also

Notes

  1. "Compendium of Mathematical Symbols". Math Vault. 2020-03-01. Retrieved 2020-08-16.
  2. Weisstein, Eric W. "Line". mathworld.wolfram.com. Retrieved 2020-08-16.
  3. In (rather old) French: "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel [...] laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude. [...] La ligne droicte est celle qui est également estenduë entre ses poincts." Pages 7 and 8 of Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions, by Pierre Mardele, Lyon, MDCXLV (1645).
  4. Coxeter 1969 , p. 4
  5. Faber 1983 , p. 95
  6. Faber 1983 , p. 95
  7. Faber, Appendix A, p. 291.
  8. Faber, Part III, p. 95.
  9. Faber, Part III, p. 108.
  10. Faber, Appendix B, p. 300.
  11. Bôcher, Maxime (1915), Plane Analytic Geometry: With Introductory Chapters on the Differential Calculus, H. Holt, p. 44, archived from the original on 2016-05-13.
  12. Alessandro Padoa, Un nouveau système de définitions pour la géométrie euclidienne, International Congress of Mathematicians, 1900
  13. Bertrand Russell, The Principles of Mathematics, p. 410
  14. Technically, the collineation group acts transitively on the set of lines.
  15. Faber, Part III, p. 108.
  16. On occasion we may consider a ray without its initial point. Such rays are called open rays, in contrast to the typical ray which would be said to be closed.
  17. Wylie Jr. 1964 , p. 59, Definition 3
  18. Pedoe 1988 , p. 2

Related Research Articles

Circle Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre; equivalently it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

Polar coordinate system Two-dimensional coordinate system where each point is determined by a distance from reference point and an angle from a reference direction

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. The radial coordinate is often denoted by r or ρ, and the angular coordinate by φ, θ, or t. Angles in polar notation are generally expressed in either degrees or radians.

Sphere geometrical object that is the surface of a ball

A sphere is a geometrical object in three-dimensional space that is the surface of a ball.

Spherical coordinate system 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace who first studied its properties. This is often written as

<i>n</i>-sphere Generalization of the ordinary sphere to arbitrary dimension

In mathematics, an n-sphere is a topological space that is homeomorphic to a standardn-sphere, which is the set of points in (n + 1)-dimensional Euclidean space that are situated at a constant distance r from a fixed point, called the center. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit n-sphere or simply the n-sphere for brevity. In terms of the standard norm, the n-sphere is defined as

Great circle Intersection of the sphere and a plane which passes through the center point of the sphere

A great circle, also known as an orthodrome, of a sphere is the intersection of the sphere and a plane that passes through the center point of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter of the sphere, and therefore all great circles have the same center and circumference as each other. This special case of a circle of a sphere is in opposition to a small circle, that is, the intersection of the sphere and a plane that does not pass through the center. Every circle in Euclidean 3-space is a great circle of exactly one sphere.

Roman surface

The Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844.

Ellipsoid Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

Unit vector Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

Poincaré half-plane model Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

Cardioid

A cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. It's also the set of points of reflections of a fixed point on a circle through all tangents to the circle.

Nephroid

In geometry, a nephroid is a specific plane curve whose name means 'kidney-shaped'. Although the term nephroid was used to describe other curves, it was applied to the curve in this article by Proctor in 1878.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

Villarceau circles

In geometry, Villarceau circles are a pair of circles produced by cutting a torus obliquely through the center at a special angle. Given an arbitrary point on a torus, four circles can be drawn through it. One is in a plane parallel to the equatorial plane of the torus and another perpendicular to that plane. The other two are Villarceau circles. They are named after the French astronomer and mathematician Yvon Villarceau (1813–1883). Mannheim (1903) showed that the Villarceau circles meet all of the parallel circular cross-sections of the torus at the same angle, a result that he said a Colonel Schoelcher had presented at a congress in 1891.

Vivianis curve

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

Three-dimensional space Geometric model of the physical space

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

Clifford torus Four-dimensional geometrical object

In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the cartesian product of two circles S1
a
and S1
b
. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1
a
and S1
b
each exists in its own independent embedding space R2
a
and R2
b
, the resulting product space will be R4 rather than R3. The historically popular view that the cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

Tangential angle

In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis.

Sectrix of Maclaurin

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases are also known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

References