In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.
Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length equals the triangle's area. Thus, the longest altitude is perpendicular to the shortest side of the triangle. The altitudes are also related to the sides of the triangle through the trigonometric functions.
In an isosceles triangle (a triangle with two congruent sides), the altitude having the incongruent side as its base will have the midpoint of that side as its foot. Also the altitude having the incongruent side as its base will be the angle bisector of the vertex angle.
It is common to mark the altitude with the letter h (as in height), often subscripted with the name of the side the altitude is drawn to.
In a right triangle, the altitude drawn to the hypotenuse c divides the hypotenuse into two segments of lengths p and q. If we denote the length of the altitude by hc, we then have the relation
For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an obtuse angle), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side, exterior to the triangle. This is illustrated in the adjacent diagram: in this obtuse triangle, an altitude dropped perpendicularly from the top vertex, which has an acute angle, intersects the extended horizontal side outside the triangle.
The three (possibly extended) altitudes intersect in a single point, called the orthocenter of the triangle, usually denoted by H. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. If one angle is a right angle, the orthocenter coincides with the vertex at the right angle. [2]
Let A, B, C denote the vertices and also the angles of the triangle, and let be the side lengths. The orthocenter has trilinear coordinates [3]
Since barycentric coordinates are all positive for a point in a triangle's interior but at least one is negative for a point in the exterior, and two of the barycentric coordinates are zero for a vertex point, the barycentric coordinates given for the orthocenter show that the orthocenter is in an acute triangle's interior, on the right-angled vertex of a right triangle, and exterior to an obtuse triangle.
In the complex plane, let the points A, B, C represent the numbers zA, zB, zC and assume that the circumcenter of triangle △ABC is located at the origin of the plane. Then, the complex number
is represented by the point H, namely the altitude of triangle △ABC. [4] From this, the following characterizations of the orthocenter H by means of free vectors can be established straightforwardly:
The first of the previous vector identities is also known as the problem of Sylvester, proposed by James Joseph Sylvester. [5]
Let D, E, F denote the feet of the altitudes from A, B, C respectively. Then:
Denote the circumradius of the triangle by R. Then [12] [13]
In addition, denoting r as the radius of the triangle's incircle, ra, rb, rc as the radii of its excircles, and R again as the radius of its circumcircle, the following relations hold regarding the distances of the orthocenter from the vertices: [14]
If any altitude, for example, AD, is extended to intersect the circumcircle at P, so that AD is a chord of the circumcircle, then the foot D bisects segment HP: [7]
The directrices of all parabolas that are externally tangent to one side of a triangle and tangent to the extensions of the other sides pass through the orthocenter. [15]
A circumconic passing through the orthocenter of a triangle is a rectangular hyperbola. [16]
The orthocenter H, the centroid G, the circumcenter O, and the center N of the nine-point circle all lie on a single line, known as the Euler line. [17] The center of the nine-point circle lies at the midpoint of the Euler line, between the orthocenter and the circumcenter, and the distance between the centroid and the circumcenter is half of that between the centroid and the orthocenter: [18]
The orthocenter is closer to the incenter I than it is to the centroid, and the orthocenter is farther than the incenter is from the centroid:
In terms of the sides a, b, c, inradius r and circumradius R, [19] [20] : p. 449
If the triangle △ABC is oblique (does not contain a right-angle), the pedal triangle of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, △DEF. Also, the incenter (the center of the inscribed circle) of the orthic triangle △DEF is the orthocenter of the original triangle △ABC. [21]
Trilinear coordinates for the vertices of the orthic triangle are given by
The extended sides of the orthic triangle meet the opposite extended sides of its reference triangle at three collinear points. [22] [23] [21]
In any acute triangle, the inscribed triangle with the smallest perimeter is the orthic triangle. [24] This is the solution to Fagnano's problem, posed in 1775. [25] The sides of the orthic triangle are parallel to the tangents to the circumcircle at the original triangle's vertices. [26]
The orthic triangle of an acute triangle gives a triangular light route. [27]
The tangent lines of the nine-point circle at the midpoints of the sides of △ABC are parallel to the sides of the orthic triangle, forming a triangle similar to the orthic triangle. [28]
The orthic triangle is closely related to the tangential triangle, constructed as follows: let LA be the line tangent to the circumcircle of triangle △ABC at vertex A, and define LB, LC analogously. Let The tangential triangle is △A"B"C", whose sides are the tangents to triangle △ABC's circumcircle at its vertices; it is homothetic to the orthic triangle. The circumcenter of the tangential triangle, and the center of similitude of the orthic and tangential triangles, are on the Euler line. [20] : p. 447
Trilinear coordinates for the vertices of the tangential triangle are given by
The reference triangle and its orthic triangle are orthologic triangles.
For more information on the orthic triangle, see here.
For any triangle with sides a, b, c and semiperimeter the altitude from side a (the base) is given by
This follows from combining Heron's formula for the area of a triangle in terms of the sides with the area formula where the base is taken as side a and the height is the altitude from the vertex A (opposite side a).
By exchanging a with b or c, this equation can also used to find the altitudes hb and hc, respectively.
Consider an arbitrary triangle with sides a, b, c and with corresponding altitudes ha, hb, hc. The altitudes and the incircle radius r are related by [29] : Lemma 1
Denoting the altitude from one side of a triangle as ha, the other two sides as b and c, and the triangle's circumradius (radius of the triangle's circumscribed circle) as R, the altitude is given by [30]
If p1, p2, p3 are the perpendicular distances from any point P to the sides, and h1, h2, h3 are the altitudes to the respective sides, then [31]
Denoting the altitudes of any triangle from sides a, b, c respectively as ha, hb, hc, and denoting the semi-sum of the reciprocals of the altitudes as we have [32]
If E is any point on an altitude AD of any triangle △ABC, then [33] : 77–78
Since the area of the triangle is , the triangle inequality implies [34]
From any point P within an equilateral triangle, the sum of the perpendiculars to the three sides is equal to the altitude of the triangle. This is Viviani's theorem.
In a right triangle with legs a and b and hypotenuse c, each of the legs is also an altitude: and . The third altitude can be found by the relation [35] [36]
This is also known as the inverse Pythagorean theorem.
Note in particular:
The theorem that the three altitudes of a triangle concur (at the orthocenter) is not directly stated in surviving Greek mathematical texts, but is used in the Book of Lemmas (proposition 5), attributed to Archimedes (3rd century BC), citing the "commentary to the treatise about right-angled triangles", a work which does not survive. It was also mentioned by Pappus (Mathematical Collection, VII, 62; c. 340). [37] The theorem was stated and proved explicitly by al-Nasawi in his (11th century) commentary on the Book of Lemmas, and attributed to al-Quhi (fl. 10th century). [38]
This proof in Arabic was translated as part of the (early 17th century) Latin editions of the Book of Lemmas, but was not widely known in Europe, and the theorem was therefore proven several more times in the 17th–19th century. Samuel Marolois proved it in his Geometrie (1619), and Isaac Newton proved it in an unfinished treatise Geometry of Curved Lines(c. 1680). [37] Later William Chapple proved it in 1749. [39]
A particularly elegant proof is due to François-Joseph Servois (1804) and independently Carl Friedrich Gauss (1810): Draw a line parallel to each side of the triangle through the opposite point, and form a new triangle from the intersections of these three lines. Then the original triangle is the medial triangle of the new triangle, and the altitudes of the original triangle are the perpendicular bisectors of the new triangle, and therefore concur (at the circumcenter of the new triangle). [40]
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.
A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular forming a right angle.
In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.
In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.
In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.
In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.
In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.
In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.
In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.
An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle.
In geometry, the polar circle of a triangle is the circle whose center is the triangle's orthocenter and whose squared radius is
In geometry, the Newton–Gauss line is the line joining the midpoints of the three diagonals of a complete quadrilateral.