Orthocenter

Last updated
The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. Triangle.Orthocenter.svg
The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle.

The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute. For a right triangle, the orthocenter coincides with the vertex at the right angle. [2]

Contents

Formulation

Let A, B, C denote the vertices and also the angles of the triangle, and let be the side lengths. The orthocenter has trilinear coordinates [3]

and barycentric coordinates

Since barycentric coordinates are all positive for a point in a triangle's interior but at least one is negative for a point in the exterior, and two of the barycentric coordinates are zero for a vertex point, the barycentric coordinates given for the orthocenter show that the orthocenter is in an acute triangle's interior, on the right-angled vertex of a right triangle, and exterior to an obtuse triangle.

In the complex plane, let the points A, B, C represent the numbers zA, zB, zC and assume that the circumcenter of triangle ABC is located at the origin of the plane. Then, the complex number

is represented by the point H, namely the altitude of triangle ABC. [4] From this, the following characterizations of the orthocenter H by means of free vectors can be established straightforwardly:

The first of the previous vector identities is also known as the problem of Sylvester, proposed by James Joseph Sylvester. [5]

Properties

Let D, E, F denote the feet of the altitudes from A, B, C respectively. Then:

The circle centered at H having radius the square root of this constant is the triangle's polar circle. [8]

Orthocentric system

Orthocentric system. Any point is the orthocenter of the triangle formed by the other three. Orthosystem SVG.svg
Orthocentric system. Any point is the orthocenter of the triangle formed by the other three.

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius. [12]

If four points form an orthocentric system, then each of the four points is the orthocenter of the other three. These four possible triangles will all have the same nine-point circle. Consequently these four possible triangles must all have circumcircles with the same circumradius.

Relation with circles and conics

Denote the circumradius of the triangle by R. Then [13] [14]

In addition, denoting r as the radius of the triangle's incircle, ra, rb, rc as the radii of its excircles, and R again as the radius of its circumcircle, the following relations hold regarding the distances of the orthocenter from the vertices: [15]

If any altitude, for example, AD, is extended to intersect the circumcircle at P, so that AD is a chord of the circumcircle, then the foot D bisects segment HP: [7]

The directrices of all parabolas that are externally tangent to one side of a triangle and tangent to the extensions of the other sides pass through the orthocenter. [16]

A circumconic passing through the orthocenter of a triangle is a rectangular hyperbola. [17]

Relation to other centers, the nine-point circle

The orthocenter H, the centroid G, the circumcenter O, and the center N of the nine-point circle all lie on a single line, known as the Euler line. [18] The center of the nine-point circle lies at the midpoint of the Euler line, between the orthocenter and the circumcenter, and the distance between the centroid and the circumcenter is half of that between the centroid and the orthocenter: [19]

The orthocenter is closer to the incenter I than it is to the centroid, and the orthocenter is farther than the incenter is from the centroid:

In terms of the sides a, b, c, inradius r and circumradius R, [20] [21] :p. 449

Orthic triangle

Triangle ^abc (respectively, ^DEF in the text) is the orthic triangle of triangle ^ABC Altitudes and orthic triangle SVG.svg
Triangle abc (respectively, DEF in the text) is the orthic triangle of triangle ABC

If the triangle ABC is oblique (does not contain a right-angle), the pedal triangle of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, DEF. Also, the incenter (the center of the inscribed circle) of the orthic triangle DEF is the orthocenter of the original triangle ABC. [22]

Trilinear coordinates for the vertices of the orthic triangle are given by

The extended sides of the orthic triangle meet the opposite extended sides of its reference triangle at three collinear points. [23] [24] [22]

In any acute triangle, the inscribed triangle with the smallest perimeter is the orthic triangle. [25] This is the solution to Fagnano's problem, posed in 1775. [26] The sides of the orthic triangle are parallel to the tangents to the circumcircle at the original triangle's vertices. [27]

The orthic triangle of an acute triangle gives a triangular light route. [28]

The tangent lines of the nine-point circle at the midpoints of the sides of ABC are parallel to the sides of the orthic triangle, forming a triangle similar to the orthic triangle. [29]

The orthic triangle is closely related to the tangential triangle, constructed as follows: let LA be the line tangent to the circumcircle of triangle ABC at vertex A, and define LB, LC analogously. Let The tangential triangle is A"B"C", whose sides are the tangents to triangle ABC's circumcircle at its vertices; it is homothetic to the orthic triangle. The circumcenter of the tangential triangle, and the center of similitude of the orthic and tangential triangles, are on the Euler line. [21] :p. 447

Trilinear coordinates for the vertices of the tangential triangle are given by The reference triangle and its orthic triangle are orthologic triangles.

For more information on the orthic triangle, see here.

History

The theorem that the three altitudes of a triangle concur (at the orthocenter) is not directly stated in surviving Greek mathematical texts, but is used in the Book of Lemmas (proposition 5), attributed to Archimedes (3rd century BC), citing the "commentary to the treatise about right-angled triangles", a work which does not survive. It was also mentioned by Pappus (Mathematical Collection, VII, 62; c. 340). [30] The theorem was stated and proved explicitly by al-Nasawi in his (11th century) commentary on the Book of Lemmas, and attributed to al-Quhi (fl.10th century). [31]

This proof in Arabic was translated as part of the (early 17th century) Latin editions of the Book of Lemmas, but was not widely known in Europe, and the theorem was therefore proven several more times in the 17th–19th century. Samuel Marolois proved it in his Geometrie (1619), and Isaac Newton proved it in an unfinished treatise Geometry of Curved Lines(c. 1680). [30] Later William Chapple proved it in 1749. [32]

A particularly elegant proof is due to François-Joseph Servois (1804) and independently Carl Friedrich Gauss (1810): Draw a line parallel to each side of the triangle through the opposite point, and form a new triangle from the intersections of these three lines. Then the original triangle is the medial triangle of the new triangle, and the altitudes of the original triangle are the perpendicular bisectors of the new triangle, and therefore concur (at the circumcenter of the new triangle). [33]

See also

Related Research Articles

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle. The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between base and apex is the height. The area of a triangle equals one-half the product of height and base length.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle.

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Orthocentric system</span> 4 planar points which are all orthocenters of triangles formed by the other 3

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Nine-point center</span> Triangle center associated with the nine-point circle

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

In geometry, the Exeter point is a special point associated with a plane triangle. It is a triangle center and is designated as X(22) in Clark Kimberling's Encyclopedia of Triangle Centers. This was discovered in a computers-in-mathematics workshop at Phillips Exeter Academy in 1986. This is one of the recent triangle centers, unlike the classical triangle centers like centroid, incenter, and Steiner point.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Acute and obtuse triangles</span> Triangles without a right angle

An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle.

<span class="mw-page-title-main">Polar circle (geometry)</span> Unique circle centered at a given triangles orthocenter

In geometry, the polar circle of a triangle is the circle whose center is the triangle's orthocenter and whose squared radius is

<span class="mw-page-title-main">Feuerbach hyperbola</span> Unique curve associated with every triangle

In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle.

References

  1. Smart 1998 , p. 156
  2. 1 2 Berele & Goldman 2001 , p. 118
  3. Clark Kimberling's Encyclopedia of Triangle Centers "Encyclopedia of Triangle Centers". Archived from the original on 2012-04-19. Retrieved 2012-04-19.
  4. Andreescu, Titu; Andrica, Dorin, "Complex numbers from A to...Z". Birkhäuser, Boston, 2006, ISBN   978-0-8176-4326-3, page 90, Proposition 3
  5. Dörrie, Heinrich, "100 Great Problems of Elementary Mathematics. Their History and Solution". Dover Publications, Inc., New York, 1965, ISBN   0-486-61348-8, page 142
  6. Johnson 2007 , p. 163, Section 255
  7. 1 2 ""Orthocenter of a triangle"". Archived from the original on 2012-07-05. Retrieved 2012-05-04.
  8. Johnson 2007 , p. 176, Section 278
  9. 1 2 Panapoi, Ronnachai, "Some properties of the orthocenter of a triangle", University of Georgia.
  10. Smart 1998 , p. 182
  11. Weisstein, Eric W. "Isotomic conjugate" From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/IsotomicConjugate.html
  12. Kocik, Jerzy; Solecki, Andrzej (2009). "Disentangling a triangle" (PDF). American Mathematical Monthly. 116 (3): 228–237.
  13. Weisstein, Eric W. "Orthocenter." From MathWorld--A Wolfram Web Resource.
  14. Altshiller-Court 2007 , p. 102
  15. Bell, Amy, "Hansen's right triangle theorem, its converse and a generalization", Forum Geometricorum 6, 2006, 335–342.
  16. Weisstein, Eric W. "Kiepert Parabola." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/KiepertParabola.html
  17. Weisstein, Eric W. "Jerabek Hyperbola." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/JerabekHyperbola.html
  18. Berele & Goldman 2001 , p. 123
  19. Berele & Goldman 2001 , pp. 124-126
  20. Marie-Nicole Gras, "Distances between the circumcenter of the extouch triangle and the classical centers", Forum Geometricorum 14 (2014), 51-61. http://forumgeom.fau.edu/FG2014volume14/FG201405index.html
  21. 1 2 Smith, Geoff, and Leversha, Gerry, "Euler and triangle geometry", Mathematical Gazette 91, November 2007, 436–452.
  22. 1 2 William H. Barker, Roger Howe (2007). "§ VI.2: The classical coincidences". Continuous symmetry: from Euclid to Klein. American Mathematical Society. p. 292. ISBN   978-0-8218-3900-3. See also: Corollary 5.5, p. 318.
  23. Johnson 2007 , p. 199, Section 315
  24. Altshiller-Court 2007 , p. 165
  25. Johnson 2007 , p. 168, Section 264
  26. Berele & Goldman 2001 , pp. 120-122
  27. Johnson 2007 , p. 172, Section 270c
  28. Bryant, V., and Bradley, H., "Triangular Light Routes," Mathematical Gazette 82, July 1998, 298-299.
  29. Kay, David C. (1993), College Geometry / A Discovery Approach, HarperCollins, p. 6, ISBN   0-06-500006-4
  30. 1 2 Newton, Isaac (1971). "3.1 The 'Geometry of Curved Lines'" . In Whiteside, Derek Thomas (ed.). The Mathematical Papers of Isaac Newton. Vol. 4. Cambridge University Press. pp. 454–455. Note Whiteside's footnotes 90–92, pp. 454–456.
  31. Hajja, Mowaffaq; Martini, Horst (2013). "Concurrency of the Altitudes of a Triangle". Mathematische Semesterberichte. 60 (2): 249–260. doi:10.1007/s00591-013-0123-z.
    Hogendijk, Jan P. (2008). "Two beautiful geometrical theorems by Abū Sahl Kūhī in a 17th century Dutch translation". Tārīk͟h-e ʾElm: Iranian Journal for the History of Science. 6: 1–36.
  32. Davies, Thomas Stephens (1850). "XXIV. Geometry and geometers". Philosophical Magazine . 3. 37 (249): 198–212. doi:10.1080/14786445008646583. Footnote on pp. 207–208. Quoted by Bogomolny, Alexander (2010). "A Possibly First Proof of the Concurrence of Altitudes". Cut The Knot. Retrieved 2019-11-17.
  33. Servois, Francois-Joseph (1804). Solutions peu connues de différens problèmes de Géométrie-pratique[Little-known solutions of various Geometry practice problems] (in French). Devilly, Metz et Courcier. p. 15.
    Gauss, Carl Friedrich (1810). "Zusätze". Geometrie der Stellung. By Carnot, Lazare (in German). Translated by Schumacher. republished in Gauss, Carl Friedrich (1873). "Zusätze". Werke. Vol. 4. Göttingen Academy of Sciences. p. 396.
    See Mackay, John Sturgeon (1883). "The Triangle and its Six Scribed Circles §5. Orthocentre". Proceedings of the Edinburgh Mathematical Society. 1: 60–96. doi: 10.1017/S0013091500036762 .