Pedal triangle

Last updated
A triangle ABC in black, the perpendiculars from a point P in blue, and the obtained pedal triangle LMN in red. Pedal Triangle.svg
A triangle ABC in black, the perpendiculars from a point P in blue, and the obtained pedal triangle LMN in red.

In geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle.

Contents

More specifically, consider a triangle ABC, and a point P that is not one of the vertices A, B, C. Drop perpendiculars from P to the three sides of the triangle (these may need to be produced, i.e., extended). Label L, M, N the intersections of the lines from P with the sides BC, AC, AB. The pedal triangle is then LMN.

If ABC is not an obtuse triangle, the angles of LMN are 180º-2A, 180º-2B and 180º-2C. [1]

The location of the chosen point P relative to the chosen triangle ABC gives rise to some special cases:

The case when P is on the circumcircle, and the pedal triangle degenerates into a line (red). Pedal Line.svg
The case when P is on the circumcircle, and the pedal triangle degenerates into a line (red).

If P is on the circumcircle of the triangle, LMN collapses to a line. This is then called the pedal line, or sometimes the Simson line after Robert Simson.

The vertices of the pedal triangle of an interior point P, as shown in the top diagram, divide the sides of the original triangle in such a way as to satisfy Carnot's theorem: [2]

Trilinear coordinates

If P has trilinear coordinates p : q : r, then the vertices L,M,N of the pedal triangle of P are given by

Antipedal triangle

One vertex, L', of the antipedal triangle of P is the point of intersection of the perpendicular to BP through B and the perpendicular to CP through C. Its other vertices, M ' and N ', are constructed analogously. Trilinear coordinates are given by

For example, the excentral triangle is the antipedal triangle of the incenter.

Suppose that P does not lie on any of the extended sides BC, CA, AB, and let P−1 denote the isogonal conjugate of P. The pedal triangle of P is homothetic to the antipedal triangle of P−1. The homothetic center (which is a triangle center if and only if P is a triangle center) is the point given in trilinear coordinates by

ap(p + q cos C)(p + r cos B) : bq(q + r cos A)(q + p cos C) : cr(r + p cos B)(r + q cos A).

The product of the areas of the pedal triangle of P and the antipedal triangle of P−1 equals the square of the area of triangle ABC.

Pedal circle

The pedal circle of the point
P
{\displaystyle P}
and its isogonal conjugate
P
'
{\displaystyle P'}
are the same. Pedal circle of isogonal conjugate.jpg
The pedal circle of the point and its isogonal conjugate are the same.

The pedal circle is defined as the circumcircle of the pedal triangle. Note that the pedal circle is not defined for points lying on the circumcircle of the triangle.

Pedal circle of isogonal conjugates

For any point not lying on the circumcircle of the triangle, it is known that and its isogonal conjugate have a common pedal circle, whose center is the midpoint of these two points. [3]

Related Research Articles

Altitude (triangle) Line segment in a triangle l

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

Nine-point circle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

Incircle and excircles of a triangle Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

Orthocentric system

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three.

Equilateral triangle Type of triangle with three sides of equal length

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

Euler line

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

Thaless theorem Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales' theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

Incenter Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

Feuerbach point Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

Cubic plane curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation

Circumscribed circle Circle that passes through all the vertices of a polygon

In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.

Fermat point

In geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

Simson line

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799.

Trilinear coordinates

In geometry, the trilinear coordinatesx:y:z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x:y is the ratio of the perpendicular distances from the point to the sides opposite vertices A and B respectively; the ratio y:z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z:x and vertices C and A.

Nine-point center

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

Isodynamic point

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid; every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg (1885).

Brocard points

In geometry, Brocard points are special points within a triangle. They are named after Henri Brocard (1845–1922), a French mathematician.

In triangle geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.

de Longchamps point

In geometry, the de Longchamps point of a triangle is a triangle center named after French mathematician Gaston Albert Gohierre de Longchamps. It is the reflection of the orthocenter of the triangle about the circumcenter.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

References

  1. "Trigonometry/Circles and Triangles/The Pedal Triangle - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2020-10-31.
  2. Alfred S. Posamentier; Charles T. Salkind (1996). Challenging problems in geometry . New York: Dover. pp.  85-86. ISBN   9780486134864. OCLC   829151719.
  3. Honsberger, Ross (1995-01-01). Episodes in Nineteenth and Twentieth Century Euclidean Geometry. The Mathematical Association of America. ISBN   978-0-88385-951-3.