Point (geometry)

Last updated
A finite set of points (in red) in the Euclidean plane. ACP 3.svg
A finite set of points (in red) in the Euclidean plane.

In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces. As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely, a point can be determined by the intersection of two curves or three surfaces, called a vertex or corner.

Contents

In classical Euclidean geometry, a point is a primitive notion, defined as "that which has no part". Points and other primitive notions are not defined in terms of other concepts, but only by certain formal properties, called axioms, that they must satisfy; for example, "there is exactly one straight line that passes through two distinct points". As physical diagrams, geometric figures are made with tools such as a compass, scriber, or pen, whose pointed tip can mark a small dot or prick a small hole representing a point, or can be drawn across a surface to represent a curve.

Since the advent of analytic geometry, points are often defined or represented in terms of numerical coordinates. In modern mathematics, a space of points is typically treated as a set, a point set.

An isolated point is an element of some subset of points which has some neighborhood containing no other points of the subset.

Points in Euclidean geometry

Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects. Euclid originally defined the point as "that which has no part". [2] In the two-dimensional Euclidean plane, a point is represented by an ordered pair (x, y) of numbers, where the first number conventionally represents the horizontal and is often denoted by x, and the second number conventionally represents the vertical and is often denoted by y. This idea is easily generalized to three-dimensional Euclidean space, where a point is represented by an ordered triplet (x, y, z) with the additional third number representing depth and often denoted by z. Further generalizations are represented by an ordered tuplet of n terms, (a1, a2, … , an) where n is the dimension of the space in which the point is located. [3]

Many constructs within Euclidean geometry consist of an infinite collection of points that conform to certain axioms. This is usually represented by a set of points; As an example, a line is an infinite set of points of the form

where c1 through cn and d are constants and n is the dimension of the space. Similar constructions exist that define the plane, line segment, and other related concepts. [4] A line segment consisting of only a single point is called a degenerate line segment.[ citation needed ]

In addition to defining points and constructs related to points, Euclid also postulated a key idea about points, that any two points can be connected by a straight line. [5] This is easily confirmed under modern extensions of Euclidean geometry, and had lasting consequences at its introduction, allowing the construction of almost all the geometric concepts known at the time. However, Euclid's postulation of points was neither complete nor definitive, and he occasionally assumed facts about points that did not follow directly from his axioms, such as the ordering of points on the line or the existence of specific points. In spite of this, modern expansions of the system serve to remove these assumptions.[ citation needed ]

Dimension of a point

There are several inequivalent definitions of dimension in mathematics. In all of the common definitions, a point is 0-dimensional.

Vector space dimension

The dimension of a vector space is the maximum size of a linearly independent subset. In a vector space consisting of a single point (which must be the zero vector 0), there is no linearly independent subset. The zero vector is not itself linearly independent, because there is a non-trivial linear combination making it zero: .

Topological dimension

The topological dimension of a topological space is defined to be the minimum value of n, such that every finite open cover of admits a finite open cover of which refines in which no point is included in more than n+1 elements. If no such minimal n exists, the space is said to be of infinite covering dimension.

A point is zero-dimensional with respect to the covering dimension because every open cover of the space has a refinement consisting of a single open set.

Hausdorff dimension

Let X be a metric space. If SX and d ∈ [0, ∞), the d-dimensional Hausdorff content of S is the infimum of the set of numbers δ ≥ 0 such that there is some (indexed) collection of balls covering S with ri > 0 for each iI that satisfies

The Hausdorff dimension of X is defined by

A point has Hausdorff dimension 0 because it can be covered by a single ball of arbitrarily small radius.

Geometry without points

Although the notion of a point is generally considered fundamental in mainstream geometry and topology, there are some systems that forgo it, e.g. noncommutative geometry and pointless topology. A "pointless" or "pointfree" space is defined not as a set, but via some structure (algebraic or logical respectively) which looks like a well-known function space on the set: an algebra of continuous functions or an algebra of sets respectively. More precisely, such structures generalize well-known spaces of functions in a way that the operation "take a value at this point" may not be defined. [6] A further tradition starts from some books of A. N. Whitehead in which the notion of region is assumed as a primitive together with the one of inclusion or connection. [7]

Point masses and the Dirac delta function

Often in physics and mathematics, it is useful to think of a point as having non-zero mass or charge (this is especially common in classical electromagnetism, where electrons are idealized as points with non-zero charge). The Dirac delta function, or δ function, is (informally) a generalized function on the real number line that is zero everywhere except at zero, with an integral of one over the entire real line. [8] The delta function is sometimes thought of as an infinitely high, infinitely thin spike at the origin, with total area one under the spike, and physically represents an idealized point mass or point charge. [9] It was introduced by theoretical physicist Paul Dirac. In the context of signal processing it is often referred to as the unit impulse symbol (or function). [10] Its discrete analog is the Kronecker delta function which is usually defined on a finite domain and takes values 0 and 1.

See also

Notes

  1. Ohmer (1969), p. 3437.
  2. Heath (1956), p. 153.
  3. Silverman (1969), p. 7.
  4. de Laguna (1922).
  5. Heath (1956), p. 154.
  6. Gerla (1985).
  7. Whitehead ( 1919 , 1920 , 1929 ).
  8. Dirac (1958), p. 58, More specifically, see §15. The δ function; Gelfand & Shilov (1964), pp. 1–5, See §§1.1, 1.3; Schwartz (1950), p. 3.
  9. Arfken & Weber (2005), p. 84.
  10. Bracewell (1986), Chapter 5.

Related Research Articles

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Hausdorff dimension</span> Invariant measure of fractal dimension

In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the Hausdorff–Besicovitch dimension.

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Euclidean distance</span> Length of a line segment

In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.

<span class="mw-page-title-main">Euclidean planes in three-dimensional space</span> Flat surface

In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

<span class="mw-page-title-main">Curve</span> Mathematical idealization of the trace left by a moving point

In mathematics, a curve is an object similar to a line, but that does not have to be straight.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

<span class="mw-page-title-main">Homogeneous coordinates</span> Coordinate system used in projective geometry

In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry.

<span class="mw-page-title-main">Taxicab geometry</span> Type of metric geometry

Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function called the taxicab distance, Manhattan distance, or city block distance. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.

In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

<span class="mw-page-title-main">Dirac measure</span> Measure that is 1 if and only if a specified element is in the set

In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields.

<span class="mw-page-title-main">Position (geometry)</span> Vector representing the position of a point with respect to a fixed origin

In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from O to P. In other words, it is the displacement or translation that maps the origin to P:

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

References