In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent. Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules.
Given any set S and ring R, there is a free R-module with basis S, which is called the free module onS or module of formalR-linear combinations of the elements of S.
A free abelian group is precisely a free module over the ring Z of integers.
For a ring and an -module , the set is a basis for if:
A free module is a module with a basis. [2]
An immediate consequence of the second half of the definition is that the coefficients in the first half are unique for each element of M.
If has invariant basis number, then by definition any two bases have the same cardinality. For example, nonzero commutative rings have invariant basis number. The cardinality of any (and therefore every) basis is called the rank of the free module . If this cardinality is finite, the free module is said to be free of finite rank, or free of rankn if the rank is known to be n.
Let R be a ring.
Given a set E and ring R, there is a free R-module that has E as a basis: namely, the direct sum of copies of R indexed by E
Explicitly, it is the submodule of the Cartesian product (R is viewed as say a left module) that consists of the elements that have only finitely many nonzero components. One can embed E into R(E) as a subset by identifying an element e with that of R(E) whose e-th component is 1 (the unity of R) and all the other components are zero. Then each element of R(E) can be written uniquely as
where only finitely many are nonzero. It is called a formal linear combination of elements of E.
A similar argument shows that every free left (resp. right) R-module is isomorphic to a direct sum of copies of R as left (resp. right) module.
The free module R(E) may also be constructed in the following equivalent way.
Given a ring R and a set E, first as a set we let
We equip it with a structure of a left module such that the addition is defined by: for x in E,
and the scalar multiplication by: for r in R and x in E,
Now, as an R-valued function on E, each f in can be written uniquely as
where are in R and only finitely many of them are nonzero and is given as
(this is a variant of the Kronecker delta). The above means that the subset of is a basis of . The mapping is a bijection between E and this basis. Through this bijection, is a free module with the basis E.
The inclusion mapping defined above is universal in the following sense. Given an arbitrary function from a set E to a left R-module N, there exists a unique module homomorphism such that ; namely, is defined by the formula:
and is said to be obtained by extending by linearity. The uniqueness means that each R-linear map is uniquely determined by its restriction to E.
As usual for universal properties, this defines R(E) up to a canonical isomorphism. Also the formation of for each set E determines a functor
from the category of sets to the category of left R-modules. It is called the free functor and satisfies a natural relation: for each set E and a left module N,
where is the forgetful functor, meaning is a left adjoint of the forgetful functor.
Many statements true for free modules extend to certain larger classes of modules. Projective modules are direct summands of free modules. Flat modules are defined by the property that tensoring with them preserves exact sequences. Torsion-free modules form an even broader class. For a finitely generated module over a PID (such as Z), the properties free, projective, flat, and torsion-free are equivalent.
See local ring, perfect ring and Dedekind ring.
In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit).
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra.
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.
In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
This article incorporates material from free vector space over a set on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.