Shape

Last updated
A children's toy called Shape-O made by Tupperware used for learning various shapes. Plastic vormenstoof of puzzelbal van "Tupperware Toy", objectnr 83212.JPG
A children's toy called Shape-O made by Tupperware used for learning various shapes.

A shape is a graphical representation of an object's form or its external boundary, outline, or external surface; it is distinct from other object properties, such as color, texture, or material type. In geometry, shape excludes information about the object's location, scale, orientation and reflection. [1] A figure is a representation including both shape and size (as in, e.g., figure of the Earth).

Contents

A plane shape or plane figure is constrained to lie on a plane , in contrast to solid 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a non-Euclidean two-dimensional space).

Classification of simple shapes

A variety of polygonal shapes. Polygon types.svg
A variety of polygonal shapes.

Some simple shapes can be put into broad categories. For instance, polygons are classified according to their number of edges as triangles, quadrilaterals, pentagons, etc. Each of these is divided into smaller categories; triangles can be equilateral, isosceles, obtuse, acute, scalene, etc. while quadrilaterals can be rectangles, rhombi, trapezoids, squares, etc.

Other common shapes are points, lines, planes, and conic sections such as ellipses, circles, and parabolas.

Among the most common 3-dimensional shapes are polyhedra, which are shapes with flat faces; ellipsoids, which are egg-shaped or sphere-shaped objects; cylinders; and cones.

If an object falls into one of these categories exactly or even approximately, we can use it to describe the shape of the object. Thus, we say that the shape of a manhole cover is a disk, because it is approximately the same geometric object as an actual geometric disk.

In geometry

A set of geometric shapes in 2 dimensions: parallelogram, triangle & circle Area.svg
A set of geometric shapes in 2 dimensions: parallelogram, triangle & circle
A set of geometric shapes in 3 dimensions: pyramid, sphere & cube Basic shapes.svg
A set of geometric shapes in 3 dimensions: pyramid, sphere & cube

A geometric shape consists of the geometric information which remains when location, scale, orientation and reflection are removed from the description of a geometric object. [1] That is, the result of moving a shape around, enlarging it, rotating it, or reflecting it in a mirror is the same shape as the original, and not a distinct shape.

Many two-dimensional geometric shapes can be defined by a set of points or vertices and lines connecting the points in a closed chain, as well as the resulting interior points. Such shapes are called polygons and include triangles, squares, and pentagons. Other shapes may be bounded by curves such as the circle or the ellipse. Many three-dimensional geometric shapes can be defined by a set of vertices, lines connecting the vertices, and two-dimensional faces enclosed by those lines, as well as the resulting interior points. Such shapes are called polyhedrons and include cubes as well as pyramids such as tetrahedrons. Other three-dimensional shapes may be bounded by curved surfaces, such as the ellipsoid and the sphere.

A shape is said to be convex if all of the points on a line segment between any two of its points are also part of the shape.

Properties

There are several ways to compare the shapes of two objects:

Figures shown in the same color have the same shape as each other and are said to be similar. Similar-geometric-shapes.svg
Figures shown in the same color have the same shape as each other and are said to be similar.

Sometimes, two similar or congruent objects may be regarded as having a different shape if a reflection is required to transform one into the other. For instance, the letters "b" and "d" are a reflection of each other, and hence they are congruent and similar, but in some contexts they are not regarded as having the same shape. Sometimes, only the outline or external boundary of the object is considered to determine its shape. For instance, a hollow sphere may be considered to have the same shape as a solid sphere. Procrustes analysis is used in many sciences to determine whether or not two objects have the same shape, or to measure the difference between two shapes. In advanced mathematics, quasi-isometry can be used as a criterion to state that two shapes are approximately the same.

Simple shapes can often be classified into basic geometric objects such as a point, a line, a curve, a plane, a plane figure (e.g. square or circle), or a solid figure (e.g. cube or sphere). However, most shapes occurring in the physical world are complex. Some, such as plant structures and coastlines, may be so complicated as to defy traditional mathematical description – in which case they may be analyzed by differential geometry, or as fractals.

Some common shapes include: Circle, Square, Triangle, Rectangle, Oval, Star (polygon), Rhombus, Semicircle. Regular polygons starting at pentagon follow the naming convention of the Greek derived prefix with '-gon' suffix: Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon... See polygon

Equivalence of shapes

In geometry, two subsets of a Euclidean space have the same shape if one can be transformed to the other by a combination of translations, rotations (together also called rigid transformations), and uniform scalings. In other words, the shape of a set of points is all the geometrical information that is invariant to translations, rotations, and size changes. Having the same shape is an equivalence relation, and accordingly a precise mathematical definition of the notion of shape can be given as being an equivalence class of subsets of a Euclidean space having the same shape.

Mathematician and statistician David George Kendall writes: [2]

In this paper ‘shape’ is used in the vulgar sense, and means what one would normally expect it to mean. [...] We here define ‘shape’ informally as ‘all the geometrical information that remains when location, scale [3] and rotational effects are filtered out from an object.’

Shapes of physical objects are equal if the subsets of space these objects occupy satisfy the definition above. In particular, the shape does not depend on the size and placement in space of the object. For instance, a "d" and a "p" have the same shape, as they can be perfectly superimposed if the "d" is translated to the right by a given distance, rotated upside down and magnified by a given factor (see Procrustes superimposition for details). However, a mirror image could be called a different shape. For instance, a "b" and a "p" have a different shape, at least when they are constrained to move within a two-dimensional space like the page on which they are written. Even though they have the same size, there's no way to perfectly superimpose them by translating and rotating them along the page. Similarly, within a three-dimensional space, a right hand and a left hand have a different shape, even if they are the mirror images of each other. Shapes may change if the object is scaled non-uniformly. For example, a sphere becomes an ellipsoid when scaled differently in the vertical and horizontal directions. In other words, preserving axes of symmetry (if they exist) is important for preserving shapes. Also, shape is determined by only the outer boundary of an object.

Congruence and similarity

Objects that can be transformed into each other by rigid transformations and mirroring (but not scaling) are congruent. An object is therefore congruent to its mirror image (even if it is not symmetric), but not to a scaled version. Two congruent objects always have either the same shape or mirror image shapes, and have the same size.

Objects that have the same shape or mirror image shapes are called geometrically similar, whether or not they have the same size. Thus, objects that can be transformed into each other by rigid transformations, mirroring, and uniform scaling are similar. Similarity is preserved when one of the objects is uniformly scaled, while congruence is not. Thus, congruent objects are always geometrically similar, but similar objects may not be congruent, as they may have different size.

Homeomorphism

A more flexible definition of shape takes into consideration the fact that realistic shapes are often deformable, e.g. a person in different postures, a tree bending in the wind or a hand with different finger positions.

One way of modeling non-rigid movements is by homeomorphisms. Roughly speaking, a homeomorphism is a continuous stretching and bending of an object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a donut are not. An often-repeated mathematical joke is that topologists cannot tell their coffee cup from their donut, [4] since a sufficiently pliable donut could be reshaped to the form of a coffee cup by creating a dimple and progressively enlarging it, while preserving the donut hole in a cup's handle.

A described shape has external lines that you can see and make up the shape. If you were putting you coordinates on and coordinate graph you could draw lines to show where you can see a shape, however not every time you put coordinates in a graph as such you can make a shape. This shape has a outline and boundary so you can see it and is not just regular dots on a regular paper.

Shape analysis

The above-mentioned mathematical definitions of rigid and non-rigid shape have arisen in the field of statistical shape analysis. In particular, Procrustes analysis is a technique used for comparing shapes of similar objects (e.g. bones of different animals), or measuring the deformation of a deformable object. Other methods are designed to work with non-rigid (bendable) objects, e.g. for posture independent shape retrieval (see for example Spectral shape analysis).

Similarity classes

All similar triangles have the same shape. These shapes can be classified using complex numbers u, v, w for the vertices, in a method advanced by J.A. Lester [5] and Rafael Artzy. For example, an equilateral triangle can be expressed by the complex numbers 0, 1, (1 + i√3)/2 representing its vertices. Lester and Artzy call the ratio

the shape of triangle (u, v, w). Then the shape of the equilateral triangle is

For any affine transformation of the complex plane,   a triangle is transformed but does not change its shape. Hence shape is an invariant of affine geometry. The shape p = S(u,v,w) depends on the order of the arguments of function S, but permutations lead to related values. For instance,

Also

Combining these permutations gives Furthermore,

These relations are "conversion rules" for shape of a triangle.

The shape of a quadrilateral is associated with two complex numbers p, q. If the quadrilateral has vertices u, v, w, x, then p = S(u,v,w) and q = S(v,w,x). Artzy proves these propositions about quadrilateral shapes:

  1. If then the quadrilateral is a parallelogram.
  2. If a parallelogram has | arg p | = | arg q |, then it is a rhombus.
  3. When p = 1 + i and q = (1 + i)/2, then the quadrilateral is square.
  4. If and sgn r = sgn(Im p), then the quadrilateral is a trapezoid.

A polygon has a shape defined by n − 2 complex numbers The polygon bounds a convex set when all these shape components have imaginary components of the same sign. [6]

Human perception of shapes

Human vision relies on a wide range of shape representations. [7] [8] Some psychologists have theorized that humans mentally break down images into simple geometric shapes (e.g., cones and spheres) called geons. [9] Others have suggested shapes are decomposed into features or dimensions that describe the way shapes tend to vary, like their segmentability, compactness and spikiness. [10] When comparing shape similarity, however, at least 22 independent dimensions are needed to account for the way natural shapes vary. [7]

There is also clear evidence that shapes guide human attention. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid; otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Congruence (geometry)</span> Relationship between two figures of the same shape and size, or mirroring each other

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

<span class="mw-page-title-main">Similarity (geometry)</span> Property of objects which are scaled or mirrored versions of each other

In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Centroid</span> Mean position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Schwarz triangle</span> Spherical triangle that can be used to tile a sphere

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Finite subdivision rule</span> Way to divide polygon into smaller parts

In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds. Substitution tilings are a well-studied type of subdivision rule.

In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte, states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.

References

  1. 1 2 Kendall, D.G. (1984). "Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces". Bulletin of the London Mathematical Society. 16 (2): 81–121. doi:10.1112/blms/16.2.81.
  2. Kendall, D.G. (1984). "Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces" (PDF). Bulletin of the London Mathematical Society. 16 (2): 81–121. doi:10.1112/blms/16.2.81.
  3. Here, scale means only uniform scaling, as non-uniform scaling would change the shape of the object (e.g., it would turn a square into a rectangle).
  4. Hubbard, John H.; West, Beverly H. (1995). Differential Equations: A Dynamical Systems Approach. Part II: Higher-Dimensional Systems. Texts in Applied Mathematics. Vol. 18. Springer. p. 204. ISBN   978-0-387-94377-0.
  5. J.A. Lester (1996) "Triangles I: Shapes", Aequationes Mathematicae 52:30–54
  6. Rafael Artzy (1994) "Shapes of Polygons", Journal of Geometry 50(1–2):11–15
  7. 1 2 Morgenstern, Yaniv; Hartmann, Frieder; Schmidt, Filipp; Tiedemann, Henning; Prokott, Eugen; Maiello, Guido; Fleming, Roland (2021). "An image-computable model of visual shape similarity". PLOS Computational Biology. 17 (6): 34. doi: 10.1371/journal.pcbi.1008981 . PMC   8195351 . PMID   34061825.
  8. Andreopoulos, Alexander; Tsotsos, John K. (2013). "50 Years of object recognition: Directions forward". Computer Vision and Image Understanding. 117 (8): 827–891. doi:10.1016/j.cviu.2013.04.005.
  9. Marr, D., & Nishihara, H. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London, 200, 269–294.
  10. Huang, Liqiang (2020). "Space of preattentive shape features". Journal of Vision. 20 (4): 10. doi: 10.1167/jov.20.4.10 . PMC   7405702 . PMID   32315405.
  11. Alexander, R. G.; Schmidt, J.; Zelinsky, G.Z. (2014). "Are summary statistics enough? Evidence for the importance of shape in guiding visual search". Visual Cognition. 22 (3–4): 595–609. doi:10.1080/13506285.2014.890989. PMC   4500174 . PMID   26180505.