Disk (mathematics)

Last updated
Disk with
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
circumference C
diameter D
radius R
center or origin O Circle-withsegments.svg
Disk with
  diameter D
  radius R
  center or origin O

In geometry, a disk (also spelled disc) [1] is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not. [2]

Contents

For a radius, , an open disk is usually denoted as and a closed disk is . However in the field of topology the closed disk is usually denoted as while the open disk is .

Formulas

In Cartesian coordinates, the open disk of center and radius R is given by the formula: [1]

while the closed disk of the same center and radius is given by:

The area of a closed or open disk of radius R is πR2 (see area of a disk). [3]

Properties

The disk has circular symmetry. [4]

The open disk and the closed disk are not topologically equivalent (that is, they are not homeomorphic), as they have different topological properties from each other. For instance, every closed disk is compact whereas every open disk is not compact. [5] However from the viewpoint of algebraic topology they share many properties: both of them are contractible [6] and so are homotopy equivalent to a single point. This implies that their fundamental groups are trivial, and all homology groups are trivial except the 0th one, which is isomorphic to Z. The Euler characteristic of a point (and therefore also that of a closed or open disk) is 1. [7]

Every continuous map from the closed disk to itself has at least one fixed point (we don't require the map to be bijective or even surjective); this is the case n=2 of the Brouwer fixed point theorem. [8] The statement is false for the open disk: [9]

Consider for example the function which maps every point of the open unit disk to another point on the open unit disk to the right of the given one. But for the closed unit disk it fixes every point on the half circle

As a statistical distribution

The average distance to a location from points on a disc Discdist.svg
The average distance to a location from points on a disc

A uniform distribution on a unit circular disk is occasionally encountered in statistics. It most commonly occurs in operations research in the mathematics of urban planning, where it may be used to model a population within a city. Other uses may take advantage of the fact that it is a distribution for which it is easy to compute the probability that a given set of linear inequalities will be satisfied. (Gaussian distributions in the plane require numerical quadrature.)

"An ingenious argument via elementary functions" shows the mean Euclidean distance between two points in the disk to be 128/45π ≈ 0.90541, [10] while direct integration in polar coordinates shows the mean squared distance to be 1.

If we are given an arbitrary location at a distance q from the center of the disk, it is also of interest to determine the average distance b(q) from points in the distribution to this location and the average square of such distances. The latter value can be computed directly as q2+1/2.

Average distance to an arbitrary internal point

The average distance from a disk to an internal point Cjcdiscin.svg
The average distance from a disk to an internal point

To find b(q) we need to look separately at the cases in which the location is internal or external, i.e. in which q ≶ 1, and we find that in both cases the result can only be expressed in terms of complete elliptic integrals.

If we consider an internal location, our aim (looking at the diagram) is to compute the expected value of r under a distribution whose density is 1/π for 0 rs(θ), integrating in polar coordinates centered on the fixed location for which the area of a cell is r dr ; hence

Here s(θ) can be found in terms of q and θ using the Law of cosines. The steps needed to evaluate the integral, together with several references, will be found in the paper by Lew et al.; [10] the result is that

where K and E are complete elliptic integrals of the first and second kinds. [11] b(0) = 2/3; b(1) = 32/ ≈ 1.13177.

Average distance to an arbitrary external point

The average distance from a disk to an external point Cjcdiscex.svg
The average distance from a disk to an external point

Turning to an external location, we can set up the integral in a similar way, this time obtaining

where the law of cosines tells us that s+(θ) and s(θ) are the roots for s of the equation

Hence

We may substitute u = q sinθ to get

using standard integrals. [12]

Hence again b(1) = 32/, while also [13]

See also

Related Research Articles

<span class="mw-page-title-main">Arithmetic–geometric mean</span> Mathematical function of two positive real arguments

In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means:

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of the trigonometric functions

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi (1829). Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In physics, the Green's function for Laplace's equation in three variables is used to describe the response of a particular type of physical system to a point source. In particular, this Green's function arises in systems that can be described by Poisson's equation, a partial differential equation (PDE) of the form

<span class="mw-page-title-main">Q-function</span> Statistics function

In statistics, the Q-function is the tail distribution function of the standard normal distribution. In other words, is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, is the probability that a standard normal random variable takes a value larger than .

<span class="mw-page-title-main">Rogers–Ramanujan continued fraction</span> Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general transformation formula is:

<span class="mw-page-title-main">Integral of the secant function</span> Antiderivative of the secant function

In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,

In fluid mechanics, flows in closed conduits are usually encountered in places such as drains and sewers where the liquid flows continuously in the closed channel and the channel is filled only up to a certain depth. Typical examples of such flows are flow in circular and Δ shaped channels.

References

  1. 1 2 Clapham, Christopher; Nicholson, James (2014), The Concise Oxford Dictionary of Mathematics, Oxford University Press, p. 138, ISBN   9780199679591 .
  2. Arnold, B. H. (2013), Intuitive Concepts in Elementary Topology, Dover Books on Mathematics, Courier Dover Publications, p. 58, ISBN   9780486275765 .
  3. Rotman, Joseph J. (2013), Journey into Mathematics: An Introduction to Proofs, Dover Books on Mathematics, Courier Dover Publications, p. 44, ISBN   9780486151687 .
  4. Altmann, Simon L. (1992). Icons and Symmetries . Oxford University Press. ISBN   9780198555995. disc circular symmetry.
  5. Maudlin, Tim (2014), New Foundations for Physical Geometry: The Theory of Linear Structures, Oxford University Press, p. 339, ISBN   9780191004551 .
  6. Cohen, Daniel E. (1989), Combinatorial Group Theory: A Topological Approach, London Mathematical Society Student Texts, vol. 14, Cambridge University Press, p. 79, ISBN   9780521349369 .
  7. In higher dimensions, the Euler characteristic of a closed ball remains equal to +1, but the Euler characteristic of an open ball is +1 for even-dimensional balls and 1 for odd-dimensional balls. See Klain, Daniel A.; Rota, Gian-Carlo (1997), Introduction to Geometric Probability, Lezioni Lincee, Cambridge University Press, pp. 46–50.
  8. Arnold (2013), p. 132.
  9. Arnold (2013), Ex. 1, p. 135.
  10. 1 2 J. S. Lew et al., "On the Average Distances in a Circular Disc" (1977).
  11. Abramowitz and Stegun, 17.3.
  12. Gradshteyn and Ryzhik 3.155.7 and 3.169.9, taking due account of the difference in notation from Abramowitz and Stegun. (Compare A&S 17.3.11 with G&R 8.113.) This article follows A&S's notation.
  13. Abramowitz and Stegun, 17.3.11 et seq.