Genus (mathematics)

Last updated
A genus-2 surface Double torus illustration.png
A genus-2 surface

In mathematics, genus (pl.: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. [1] A sphere has genus 0, while a torus has genus 1.

Contents

Topology

Orientable surfaces

The coffee cup and donut shown in this animation both have genus one. Mug and Torus morph.gif
The coffee cup and donut shown in this animation both have genus one.

The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. [2] It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic , via the relationship for closed surfaces, where is the genus. For surfaces with boundary components, the equation reads .

In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort.

For instance:

Explicit construction of surfaces of the genus g is given in the article on the fundamental polygon.

Non-orientable surfaces

The non-orientable genus, demigenus, or Euler genus of a connected, non-orientable closed surface is a positive integer representing the number of cross-caps attached to a sphere. Alternatively, it can be defined for a closed surface in terms of the Euler characteristic χ, via the relationship χ = 2 − k, where k is the non-orientable genus.

For instance:

Knot

The genus of a knot K is defined as the minimal genus of all Seifert surfaces for K. [4] A Seifert surface of a knot is however a manifold with boundary, the boundary being the knot, i.e. homeomorphic to the unit circle. The genus of such a surface is defined to be the genus of the two-manifold, which is obtained by gluing the unit disk along the boundary.

Handlebody

The genus of a 3-dimensional handlebody is an integer representing the maximum number of cuttings along embedded disks without rendering the resultant manifold disconnected. It is equal to the number of handles on it.

For instance:

Graph theory

The genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n handles (i.e. an oriented surface of the genus n). Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing.

The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

The Euler genus is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps or on a sphere with n/2 handles. [5]

In topological graph theory there are several definitions of the genus of a group. Arthur T. White introduced the following concept. The genus of a group G is the minimum genus of a (connected, undirected) Cayley graph for G.

The graph genus problem is NP-complete. [6]

Algebraic geometry

There are two related definitions of genus of any projective algebraic scheme : the arithmetic genus and the geometric genus. [7] When is an algebraic curve with field of definition the complex numbers, and if has no singular points, then these definitions agree and coincide with the topological definition applied to the Riemann surface of (its manifold of complex points). For example, the definition of elliptic curve from algebraic geometry is connected non-singular projective curve of genus 1 with a given rational point on it.

By the Riemann–Roch theorem, an irreducible plane curve of degree given by the vanishing locus of a section has geometric genus

where is the number of singularities when properly counted.

Differential geometry

In differential geometry, a genus of an oriented manifold may be defined as a complex number subject to the conditions

In other words, is a ring homomorphism , where is Thom's oriented cobordism ring. [8]

The genus is multiplicative for all bundles on spinor manifolds with a connected compact structure if is an elliptic integral such as for some This genus is called an elliptic genus.

The Euler characteristic is not a genus in this sense since it is not invariant concerning cobordisms.

Biology

Genus can be also calculated for the graph spanned by the net of chemical interactions in nucleic acids or proteins. In particular, one may study the growth of the genus along the chain. Such a function (called the genus trace) shows the topological complexity and domain structure of biomolecules. [9]

See also

Citations

  1. Popescu-Pampu 2016, p. xiii, Introduction.
  2. Popescu-Pampu 2016, p. xiv, Introduction.
  3. Weisstein, E.W. "Genus". MathWorld. Retrieved 4 June 2021.
  4. Adams, Colin (2004), The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, ISBN   978-0-8218-3678-1
  5. Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. New York, NY: Springer New York. doi:10.1007/978-1-4614-6971-1. ISBN   978-1-4614-6970-4.
  6. Thomassen, Carsten (1989). "The graph genus problem is NP-complete". Journal of Algorithms. 10 (4): 568–576. doi:10.1016/0196-6774(89)90006-0. ISSN   0196-6774. Zbl   0689.68071.
  7. Hirzebruch, Friedrich (1995) [1978]. Topological methods in algebraic geometry. Classics in Mathematics. Translation from the German and appendix one by R. L. E. Schwarzenberger. Appendix two by A. Borel (Reprint of the 2nd, corr. print. of the 3rd ed.). Berlin: Springer-Verlag. ISBN   978-3-540-58663-0. Zbl   0843.14009.
  8. Charles Rezk - Elliptic cohomology and elliptic curves (Felix Klein lectures, Bonn 2015. Department of Mathematics, University of Illinois, Urbana, IL)
  9. Sułkowski, Piotr; Sulkowska, Joanna I.; Dabrowski-Tumanski, Pawel; Andersen, Ebbe Sloth; Geary, Cody; Zając, Sebastian (2018-12-03). "Genus trace reveals the topological complexity and domain structure of biomolecules". Scientific Reports. 8 (1): 17537. Bibcode:2018NatSR...817537Z. doi:10.1038/s41598-018-35557-3. ISSN   2045-2322. PMC   6277428 . PMID   30510290.

Related Research Articles

<span class="mw-page-title-main">Surface (topology)</span> Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Theorem in differential geometry

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups. This operation, in turn, allows one to associate various named homologies or homology theories to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the homology of a topological space. There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index is equal to the topological index. It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification with algebraic topology, in this case. It is a prototype result for many others, and is often applied in the theory of Riemann surfaces and algebraic curves.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, an n-dimensional differential structure on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.

In mathematics, an incompressible surface is a surface properly embedded in a 3-manifold, which, in intuitive terms, is a "nontrivial" surface that cannot be simplified. In non-mathematical terms, the surface of a suitcase is compressible, because we could cut the handle and shrink it into the surface. But a Conway sphere is incompressible, because there are essential parts of a knot or link both inside and out, so there is no way to move the entire knot or link to one side of the punctured sphere. The mathematical definition is as follows. There are two cases to consider. A sphere is incompressible if both inside and outside the sphere there are some obstructions that prevent the sphere from shrinking to a point and also prevent the sphere from expanding to encompass all of space. A surface other than a sphere is incompressible if any disk with its boundary on the surface spans a disk in the surface.

<span class="mw-page-title-main">Torus knot</span> Knot which lies on the surface of a torus in 3-dimensional space

In knot theory, a torus knot is a special kind of knot that lies on the surface of an unknotted torus in R3. Similarly, a torus link is a link which lies on the surface of a torus in the same way. Each torus knot is specified by a pair of coprime integers p and q. A torus link arises if p and q are not coprime. A torus knot is trivial if and only if either p or q is equal to 1 or −1. The simplest nontrivial example is the (2,3)-torus knot, also known as the trefoil knot.

A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a -bundle over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Pair of pants (mathematics)</span> Three holed sphere

In mathematics, a pair of pants is a surface which is homeomorphic to the three-holed sphere. The name comes from considering one of the removed disks as the waist and the two others as the cuffs of a pair of pants.

In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to Heinz Hopf.

<span class="mw-page-title-main">Graph embedding</span> Embedding a graph in a topological space, often Euclidean

In topological graph theory, an embedding of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs are associated with edges in such a way that:

<span class="mw-page-title-main">Regular map (graph theory)</span> Symmetric tessellation of a closed surface

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

In mathematics, a genus g surface is a surface formed by the connected sum of g distinct tori: the interior of a disk is removed from each of g distinct tori and the boundaries of the g many disks are identified, forming a g-torus. The genus of such a surface is g.

References