In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.
A genus assigns a number to each manifold X such that
The manifolds and manifolds with boundary may be required to have additional structure; for example, they might be oriented, spin, stably complex, and so on (see list of cobordism theories for many more examples). The value is in some ring, often the ring of rational numbers, though it can be other rings such as or the ring of modular forms.
The conditions on can be rephrased as saying that is a ring homomorphism from the cobordism ring of manifolds (with additional structure) to another ring.
Example: If is the signature of the oriented manifold X, then is a genus from oriented manifolds to the ring of integers.
A sequence of polynomials in variables is called multiplicative if
implies that
If is a formal power series in z with constant term 1, we can define a multiplicative sequence
by
where is the kth elementary symmetric function of the indeterminates . (The variables will often in practice be Pontryagin classes.)
The genus of compact, connected, smooth, oriented manifolds corresponding to Q is given by
where the are the Pontryagin classes of X. The power series Q is called the characteristic power series of the genus . A theorem of René Thom, which states that the rationals tensored with the cobordism ring is a polynomial algebra in generators of degree 4k for positive integers k, implies that this gives a bijection between formal power series Q with rational coefficients and leading coefficient 1, and genera from oriented manifolds to the rational numbers.
The L genus is the genus of the formal power series
where the numbers are the Bernoulli numbers. The first few values are:
(for further L-polynomials see [1] or OEIS: A237111 ). Now let M be a closed smooth oriented manifold of dimension 4n with Pontrjagin classes . Friedrich Hirzebruch showed that the L genus of M in dimension 4n evaluated on the fundamental class of , denoted , is equal to , the signature of M (i.e., the signature of the intersection form on the 2nth cohomology group of M):
This is now known as the Hirzebruch signature theorem (or sometimes the Hirzebruch index theorem).
The fact that is always integral for a smooth manifold was used by John Milnor to give an example of an 8-dimensional PL manifold with no smooth structure. Pontryagin numbers can also be defined for PL manifolds, and Milnor showed that his PL manifold had a non-integral value of , and so was not smoothable.
Since projective K3 surfaces are smooth complex manifolds of dimension two, their only non-trivial Pontryagin class is in . It can be computed as -48 using the tangent sequence and comparisons with complex chern classes. Since , we have its signature. This can be used to compute its intersection form as a unimodular lattice since it has , and using the classification of unimodular lattices. [2]
The Todd genus is the genus of the formal power series
with as before, Bernoulli numbers. The first few values are
The Todd genus has the particular property that it assigns the value 1 to all complex projective spaces (i.e. ), and this suffices to show that the Todd genus agrees with the arithmetic genus for algebraic varieties as the arithmetic genus is also 1 for complex projective spaces. This observation is a consequence of the Hirzebruch–Riemann–Roch theorem, and in fact is one of the key developments that led to the formulation of that theorem.
The  genus is the genus associated to the characteristic power series
(There is also an  genus which is less commonly used, associated to the characteristic series .) The first few values are
The  genus of a spin manifold is an integer, and an even integer if the dimension is 4 mod 8 (which in dimension 4 implies Rochlin's theorem) – for general manifolds, the  genus is not always an integer. This was proven by Hirzebruch and Armand Borel; this result both motivated and was later explained by the Atiyah–Singer index theorem, which showed that the  genus of a spin manifold is equal to the index of its Dirac operator.
By combining this index result with a Weitzenbock formula for the Dirac Laplacian, André Lichnerowicz deduced that if a compact spin manifold admits a metric with positive scalar curvature, its  genus must vanish. This only gives an obstruction to positive scalar curvature when the dimension is a multiple of 4, but Nigel Hitchin later discovered an analogous -valued obstruction in dimensions 1 or 2 mod 8. These results are essentially sharp. Indeed, Mikhail Gromov, H. Blaine Lawson, and Stephan Stolz later proved that the  genus and Hitchin's -valued analog are the only obstructions to the existence of positive-scalar-curvature metrics on simply-connected spin manifolds of dimension greater than or equal to 5.
A genus is called an elliptic genus if the power series satisfies the condition
for constants and . (As usual, Q is the characteristic power series of the genus.)
One explicit expression for f(z) is
where
and sn is the Jacobi elliptic function.
Examples:
The first few values of such genera are:
Example (elliptic genus for quaternionic projective plane) :
Example (elliptic genus for octonionic projective plane, or Cayley plane):
The Witten genus is the genus associated to the characteristic power series
where σL is the Weierstrass sigma function for the lattice L, and G is a multiple of an Eisenstein series.
The Witten genus of a 4k dimensional compact oriented smooth spin manifold with vanishing first Pontryagin class is a modular form of weight 2k, with integral Fourier coefficients.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.
In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa.
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,
In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.
The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.
The Voigt effect is a magneto-optical phenomenon which rotates and elliptizes linearly polarised light sent into an optically active medium. Unlike many other magneto-optical effects such as the Kerr or Faraday effect which are linearly proportional to the magnetization, the Voigt effect is proportional to the square of the magnetization and can be seen experimentally at normal incidence. There are several denominations for this effect in the literature: the Cotton–Mouton effect, the Voigt effect, and magnetic-linear birefringence. This last denomination is closer in the physical sense, where the Voigt effect is a magnetic birefringence of the material with an index of refraction parallel and perpendicular ) to the magnetization vector or to the applied magnetic field.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In two-dimensional conformal field theory, Virasoro conformal blocks are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identites. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory.
The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge . Correlation functions of the spin and energy operators are described by the minimal model. While the minimal model has been exactly solved, see also, e.g., the article on Ising critical exponents, the solution does not cover other observables such as connectivities of clusters.