Multiplicative sequence

Last updated

In mathematics, a multiplicative sequence or m-sequence is a sequence of polynomials associated with a formal group structure. They have application in the cobordism ring in algebraic topology.

Contents

Definition

Let Kn be polynomials over a ring A in indeterminates p1, ... weighted so that pi has weight i (with p0 = 1) and all the terms in Kn have weight n (so that Kn is a polynomial in p1, ..., pn). The sequence Kn is multiplicative if an identity

implies

In other words, is required to be an endomorphism of the multiplicative monoid .

The power series

is the characteristic power series of the Kn. A multiplicative sequence is determined by its characteristic power series Q(z), and every power series with constant term 1 gives rise to a multiplicative sequence.

To recover a multiplicative sequence from a characteristic power series Q(z) we consider the coefficient of zj in the product

for any m > j. This is symmetric in the βi and homogeneous of weight j: so can be expressed as a polynomial Kj(p1, ..., pj) in the elementary symmetric functions p of the β. Then Kj defines a multiplicative sequence.

Examples

As an example, the sequence Kn = pn is multiplicative and has characteristic power series 1+ z.

Consider the power series

where Bk is the k-th Bernoulli number. The multiplicative sequence with Q as characteristic power series is denoted Lj(p1, ..., pj).

The multiplicative sequence with characteristic power series

is denoted Aj(p1,...,pj).

The multiplicative sequence with characteristic power series

is denoted Tj(p1,...,pj): these are the Todd polynomials .

Genus

The genus of a multiplicative sequence is a ring homomorphism, from the cobordism ring of smooth oriented compact manifolds to another ring, usually the ring of rational numbers.

For example, the Todd genus is associated to the Todd polynomials with characteristic power series .

Related Research Articles

Binomial coefficient

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n, and is given by the formula

Complex number Element of a number system in which –1 has a square root

A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation i2 = −1. Because no real number satisfies this equation, i is called an imaginary number. For the complex number a + bi, a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers, and are fundamental in many aspects of the scientific description of the natural world.

Discrete Fourier transform

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In mathematics, a product is the result of multiplication, or an expression that identifies factors to be multiplied. For example, 30 is the product of 6 and 5, and is the product of and .

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no perfect square other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

Quantum harmonic oscillator Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In mathematics, a formal power series is a generalization of a polynomial, where the number of terms is allowed to be infinite, with no requirements of convergence. Thus, the series may no longer represent a function of its variable, merely a formal sequence of coefficients, in contrast to a power series, which defines a function by taking numerical values for the variable within a radius of convergence. In a formal power series, the powers of the variable are used only as position-holders for the coefficients, so that the coefficient of is the fifth term in the sequence. In combinatorics, the method of generating functions uses formal power series to represent numerical sequences and multisets, for instance allowing concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved. More generally, formal power series can include series with any finite number of variables, and with coefficients in an arbitrary ring.

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

Root of unity Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

Cayley–Hamilton theorem Every square matrix over a commutative ring satisfies its own characteristic equation

In linear algebra, the Cayley–Hamilton theorem states that every square matrix over a commutative ring satisfies its own characteristic equation.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc.

Polynomial ring Algebraic structure

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order p is the ring of -adic integers.

Genus of a multiplicative sequence

In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.

In differential topology, an area of mathematics, the Hirzebruch signature theorem is Friedrich Hirzebruch's 1954 result expressing the signature of a smooth compact oriented manifold by a linear combination of Pontryagin numbers called the L-genus. It was used in the proof of the Hirzebruch–Riemann–Roch theorem.

In mathematics, a univariate polynomial of degree n with real or complex coefficients has n complex roots, if counted with their multiplicities. They form a set of n points in the complex plane. This article concerns the geometry of these points, that is the information about their localization in the complex plane that can be deduced from the degree and the coefficients of the polynomial.

In mathematics, specifically in commutative algebra, the power sum symmetric polynomials are a type of basic building block for symmetric polynomials, in the sense that every symmetric polynomial with rational coefficients can be expressed as a sum and difference of products of power sum symmetric polynomials with rational coefficients. However, not every symmetric polynomial with integral coefficients is generated by integral combinations of products of power-sum polynomials: they are a generating set over the rationals, but not over the integers.

In mathematics, the discrete Fourier transform over an arbitrary ring generalizes the discrete Fourier transform of a function whose values are complex numbers.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

References