Example graphs | |
---|---|
Planar | Nonplanar |
Butterfly graph | Complete graph K5 |
Complete graph K4 | Utility graph K3,3 |
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [1] [2] Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection.
Plane graphs can be encoded by combinatorial maps or rotation systems.
An equivalence class of topologically equivalent drawings on the sphere, usually with additional assumptions such as the absence of isthmuses, is called a planar map. Although a plane graph has an external or unbounded face, none of the faces of a planar map has a particular status.
Planar graphs generalize to graphs drawable on a surface of a given genus. In this terminology, planar graphs have genus 0, since the plane (and the sphere) are surfaces of genus 0. See "graph embedding" for other related topics.
The Polish mathematician Kazimierz Kuratowski provided a characterization of planar graphs in terms of forbidden graphs, now known as Kuratowski's theorem:
A subdivision of a graph results from inserting vertices into edges (for example, changing an edge • —— • to • — • — • ) zero or more times.
Instead of considering subdivisions, Wagner's theorem deals with minors:
A minor of a graph results from taking a subgraph and repeatedly contracting an edge into a vertex, with each neighbor of the original end-vertices becoming a neighbor of the new vertex.
Klaus Wagner asked more generally whether any minor-closed class of graphs is determined by a finite set of "forbidden minors". This is now the Robertson–Seymour theorem, proved in a long series of papers. In the language of this theorem, K5 and K3,3 are the forbidden minors for the class of finite planar graphs.
In practice, it is difficult to use Kuratowski's criterion to quickly decide whether a given graph is planar. However, there exist fast algorithms for this problem: for a graph with n vertices, it is possible to determine in time O(n) (linear time) whether the graph may be planar or not (see planarity testing).
For a simple, connected, planar graph with v vertices and e edges and f faces, the following simple conditions hold for v ≥ 3:
In this sense, planar graphs are sparse graphs, in that they have only O(v) edges, asymptotically smaller than the maximum O(v2). The graph K3,3, for example, has 6 vertices, 9 edges, and no cycles of length 3. Therefore, by Theorem 2, it cannot be planar. These theorems provide necessary conditions for planarity that are not sufficient conditions, and therefore can only be used to prove a graph is not planar, not that it is planar. If both theorem 1 and 2 fail, other methods may be used.
Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then
As an illustration, in the butterfly graph given above, v = 5, e = 6 and f = 3. In general, if the property holds for all planar graphs of f faces, any change to the graph that creates an additional face while keeping the graph planar would keep v – e + f an invariant. Since the property holds for all graphs with f = 2, by mathematical induction it holds for all cases. Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.
In a finite, connected, simple , planar graph, any face (except possibly the outer one) is bounded by at least three edges and every edge touches at most two faces, so 3f <= 2e; using Euler's formula, one can then show that these graphs are sparse in the sense that if v ≥ 3:
Euler's formula is also valid for convex polyhedra. This is no coincidence: every convex polyhedron can be turned into a connected, simple, planar graph by using the Schlegel diagram of the polyhedron, a perspective projection of the polyhedron onto a plane with the center of perspective chosen near the center of one of the polyhedron's faces. Not every planar graph corresponds to a convex polyhedron in this way: the trees do not, for example. Steinitz's theorem says that the polyhedral graphs formed from convex polyhedra are precisely the finite 3-connected simple planar graphs. More generally, Euler's formula applies to any polyhedron whose faces are simple polygons that form a surface topologically equivalent to a sphere, regardless of its convexity.
Connected planar graphs with more than one edge obey the inequality 2e ≥ 3f, because each face has at least three face-edge incidences and each edge contributes exactly two incidences. It follows via algebraic transformations of this inequality with Euler's formula v – e + f = 2 that for finite planar graphs the average degree is strictly less than 6. Graphs with higher average degree cannot be planar.
We say that two circles drawn in a plane kiss (or osculate ) whenever they intersect in exactly one point. A "coin graph" is a graph formed by a set of circles, no two of which have overlapping interiors, by making a vertex for each circle and an edge for each pair of circles that kiss. The circle packing theorem, first proved by Paul Koebe in 1936, states that a graph is planar if and only if it is a coin graph.
This result provides an easy proof of Fáry's theorem, that every simple planar graph can be embedded in the plane in such a way that its edges are straight line segments that do not cross each other. If one places each vertex of the graph at the center of the corresponding circle in a coin graph representation, then the line segments between centers of kissing circles do not cross any of the other edges.
The meshedness coefficient or density D of a planar graph, or network, is the ratio of the number f – 1 of bounded faces (the same as the circuit rank of the graph, by Mac Lane's planarity criterion) by its maximal possible values 2v – 5 for a graph with v vertices:
The density obeys 0 ≤ D ≤ 1, with D = 0 for a completely sparse planar graph (a tree), and D = 1 for a completely dense (maximal) planar graph. [3]
Given an embedding G of a (not necessarily simple) connected graph in the plane without edge intersections, we construct the dual graph G* as follows: we choose one vertex in each face of G (including the outer face) and for each edge e in G we introduce a new edge in G* connecting the two vertices in G* corresponding to the two faces in G that meet at e. Furthermore, this edge is drawn so that it crosses e exactly once and that no other edge of G or G* is intersected. Then G* is again the embedding of a (not necessarily simple) planar graph; it has as many edges as G, as many vertices as G has faces and as many faces as G has vertices. The term "dual" is justified by the fact that G** = G; here the equality is the equivalence of embeddings on the sphere. If G is the planar graph corresponding to a convex polyhedron, then G* is the planar graph corresponding to the dual polyhedron.
Duals are useful because many properties of the dual graph are related in simple ways to properties of the original graph, enabling results to be proven about graphs by examining their dual graphs.
While the dual constructed for a particular embedding is unique (up to isomorphism), graphs may have different (i.e. non-isomorphic) duals, obtained from different (i.e. non-homeomorphic) embeddings.
A simple graph is called maximal planar if it is planar but adding any edge (on the given vertex set) would destroy that property. All faces (including the outer one) are then bounded by three edges, explaining the alternative term plane triangulation (which technically means a plane drawing of the graph). The alternative names "triangular graph" [4] or "triangulated graph" [5] have also been used, but are ambiguous, as they more commonly refer to the line graph of a complete graph and to the chordal graphs respectively. Every maximal planar graph on more than 3 vertices is at least 3-connected. [6]
If a maximal planar graph has v vertices with v > 2, then it has precisely 3v – 6 edges and 2v – 4 faces.
Apollonian networks are the maximal planar graphs formed by repeatedly splitting triangular faces into triples of smaller triangles. Equivalently, they are the planar 3-trees.
Strangulated graphs are the graphs in which every peripheral cycle is a triangle. In a maximal planar graph (or more generally a polyhedral graph) the peripheral cycles are the faces, so maximal planar graphs are strangulated. The strangulated graphs include also the chordal graphs, and are exactly the graphs that can be formed by clique-sums (without deleting edges) of complete graphs and maximal planar graphs. [7]
Outerplanar graphs are graphs with an embedding in the plane such that all vertices belong to the unbounded face of the embedding. Every outerplanar graph is planar, but the converse is not true: K4 is planar but not outerplanar. A theorem similar to Kuratowski's states that a finite graph is outerplanar if and only if it does not contain a subdivision of K4 or of K2,3. The above is a direct corollary of the fact that a graph G is outerplanar if the graph formed from G by adding a new vertex, with edges connecting it to all the other vertices, is a planar graph. [8]
A 1-outerplanar embedding of a graph is the same as an outerplanar embedding. For k > 1 a planar embedding is k-outerplanar if removing the vertices on the outer face results in a (k – 1)-outerplanar embedding. A graph is k-outerplanar if it has a k-outerplanar embedding.
A Halin graph is a graph formed from an undirected plane tree (with no degree-two nodes) by connecting its leaves into a cycle, in the order given by the plane embedding of the tree. Equivalently, it is a polyhedral graph in which one face is adjacent to all the others. Every Halin graph is planar. Like outerplanar graphs, Halin graphs have low treewidth, making many algorithmic problems on them more easily solved than in unrestricted planar graphs. [9]
An upward planar graph is a directed acyclic graph that can be drawn in the plane with its edges as non-crossing curves that are consistently oriented in an upward direction. Not every planar directed acyclic graph is upward planar, and it is NP-complete to test whether a given graph is upward planar.
A planar graph is said to be convex if all of its faces (including the outer face) are convex polygons. Not all planar graphs have a convex embedding (e.g. the complete bipartite graph K2,4). A sufficient condition that a graph can be drawn convexly is that it is a subdivision of a 3-vertex-connected planar graph. Tutte's spring theorem even states that for simple 3-vertex-connected planar graphs the position of the inner vertices can be chosen to be the average of its neighbors.
Word-representable planar graphs include triangle-free planar graphs and, more generally, 3-colourable planar graphs, [10] as well as certain face subdivisions of triangular grid graphs, [11] and certain triangulations of grid-covered cylinder graphs. [12]
The asymptotic for the number of (labeled) planar graphs on vertices is , where and . [13]
Almost all planar graphs have an exponential number of automorphisms. [14]
The number of unlabeled (non-isomorphic) planar graphs on vertices is between and . [15]
The four color theorem states that every planar graph is 4-colorable (i.e., 4-partite).
Fáry's theorem states that every simple planar graph admits a representation as a planar straight-line graph. A universal point set is a set of points such that every planar graph with n vertices has such an embedding with all vertices in the point set; there exist universal point sets of quadratic size, formed by taking a rectangular subset of the integer lattice. Every simple outerplanar graph admits an embedding in the plane such that all vertices lie on a fixed circle and all edges are straight line segments that lie inside the disk and don't intersect, so n-vertex regular polygons are universal for outerplanar graphs.
Scheinerman's conjecture (now a theorem) states that every planar graph can be represented as an intersection graph of line segments in the plane.
The planar separator theorem states that every n-vertex planar graph can be partitioned into two subgraphs of size at most 2n/3 by the removal of O(√n) vertices. As a consequence, planar graphs also have treewidth and branch-width O(√n).
The planar product structure theorem states that every planar graph is a subgraph of the strong graph product of a graph of treewidth at most 8 and a path. [16] This result has been used to show that planar graphs have bounded queue number, bounded non-repetitive chromatic number, and universal graphs of near-linear size. It also has applications to vertex ranking [17] and p-centered colouring [18] of planar graphs.
For two planar graphs with v vertices, it is possible to determine in time O(v) whether they are isomorphic or not (see also graph isomorphism problem). [19]
Any planar graph on n nodes has at most 8(n-2) maximal cliques, [20] which implies that the class of planar graphs is a class with few cliques.
An apex graph is a graph that may be made planar by the removal of one vertex, and a k-apex graph is a graph that may be made planar by the removal of at most k vertices.
A 1-planar graph is a graph that may be drawn in the plane with at most one simple crossing per edge, and a k-planar graph is a graph that may be drawn with at most k simple crossings per edge.
A map graph is a graph formed from a set of finitely many simply-connected interior-disjoint regions in the plane by connecting two regions when they share at least one boundary point. When at most three regions meet at a point, the result is a planar graph, but when four or more regions meet at a point, the result can be nonplanar (for example, if one thinks of a circle divided into sectors, with the sectors being the regions, then the corresponding map graph is the complete graph as all the sectors have a common boundary point - the centre point).
A toroidal graph is a graph that can be embedded without crossings on the torus. More generally, the genus of a graph is the minimum genus of a two-dimensional surface into which the graph may be embedded; planar graphs have genus zero and nonplanar toroidal graphs have genus one. Every graph can be embedded without crossings into some (orientable, connected) closed two-dimensional surface (sphere with handles) and thus the genus of a graph is well defined. Obviously, if the graph can be embedded without crossings into a (orientable, connected, closed) surface with genus g, it can be embedded without crossings into all (orientable, connected, closed) surfaces with greater or equal genus. There are also other concepts in graph theory that are called "X genus" with "X" some qualifier; in general these differ from the above defined concept of "genus" without any qualifier. Especially the non-orientable genus of a graph (using non-orientable surfaces in its definition) is different for a general graph from the genus of that graph (using orientable surfaces in its definition).
Any graph may be embedded into three-dimensional space without crossings. In fact, any graph can be drawn without crossings in a two plane setup, where two planes are placed on top of each other and the edges are allowed to "jump up" and "drop down" from one plane to the other at any place (not just at the graph vertexes) so that the edges can avoid intersections with other edges. This can be interpreted as saying that it is possible to make any electrical conductor network with a two-sided circuit board where electrical connection between the sides of the board can be made (as is possible with typical real life circuit boards, with the electrical connections on the top side of the board achieved through pieces of wire and at the bottom side by tracks of copper constructed on to the board itself and electrical connection between the sides of the board achieved through drilling holes, passing the wires through the holes and soldering them into the tracks); one can also interpret this as saying that in order to build any road network, one only needs just bridges or just tunnels, not both (2 levels is enough, 3 is not needed). Also, in three dimensions the question about drawing the graph without crossings is trivial. However, a three-dimensional analogue of the planar graphs is provided by the linklessly embeddable graphs, graphs that can be embedded into three-dimensional space in such a way that no two cycles are topologically linked with each other. In analogy to Kuratowski's and Wagner's characterizations of the planar graphs as being the graphs that do not contain K5 or K3,3 as a minor, the linklessly embeddable graphs may be characterized as the graphs that do not contain as a minor any of the seven graphs in the Petersen family. In analogy to the characterizations of the outerplanar and planar graphs as being the graphs with Colin de Verdière graph invariant at most two or three, the linklessly embeddable graphs are the graphs that have Colin de Verdière invariant at most four.
Thus a planar graph, when drawn on a flat surface, either has no edge-crossings or can be redrawn without them.
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of or of .
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.
In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.
In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.
In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by Klaus Wagner, Fáry, and Sherman K. Stein.
In graph theory, a cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or in which every block is an edge or a cycle.
In graph theory, a peripheral cycle in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles were first studied by Tutte (1963), and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.
In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures. Most of these methods operate in O(n) time (linear time), where n is the number of edges (or vertices) in the graph, which is asymptotically optimal. Rather than just being a single Boolean value, the output of a planarity testing algorithm may be a planar graph embedding, if the graph is planar, or an obstacle to planarity such as a Kuratowski subgraph if it is not.
The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.
In graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross, and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.
In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.
In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length.
In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.
In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph.
In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T. Tutte, states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.