Connectivity (graph theory)

Last updated
This graph becomes disconnected when the right-most node in the gray area on the left is removed Network Community Structure.svg
This graph becomes disconnected when the right-most node in the gray area on the left is removed
This graph becomes disconnected when the dashed edge is removed. Sample-graph.jpg
This graph becomes disconnected when the dashed edge is removed.

In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. [1] It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network.

Contents

Connected vertices and graphs

With vertex 0, this graph is disconnected. The rest of the graph is connected. UndirectedDegrees.svg
With vertex 0, this graph is disconnected. The rest of the graph is connected.

In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected. If the two vertices are additionally connected by a path of length 1 (that is, they are the endpoints of a single edge), the vertices are called adjacent.

A graph is said to be connected if every pair of vertices in the graph is connected. This means that there is a path between every pair of vertices. An undirected graph that is not connected is called disconnected. An undirected graph G is therefore disconnected if there exist two vertices in G such that no path in G has these vertices as endpoints. A graph with just one vertex is connected. An edgeless graph with two or more vertices is disconnected.

A directed graph is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. It is unilaterally connected or unilateral (also called semiconnected) if it contains a directed path from u to v or a directed path from v to u for every pair of vertices u, v. [2] It is strongly connected, or simply strong, if it contains a directed path from u to v and a directed path from v to u for every pair of vertices u, v.

Components and cuts

A connected component is a maximal connected subgraph of an undirected graph. Each vertex belongs to exactly one connected component, as does each edge. A graph is connected if and only if it has exactly one connected component.

The strong components are the maximal strongly connected subgraphs of a directed graph.

A vertex cut or separating set of a connected graph G is a set of vertices whose removal renders G disconnected. The vertex connectivity κ(G) (where G is not a complete graph) is the size of a minimal vertex cut. A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater.

More precisely, any graph G (complete or not) is said to be k-vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ(G) is defined as the largest k such that G is k-connected. In particular, a complete graph with n vertices, denoted Kn, has no vertex cuts at all, but κ(Kn) = n − 1.

A vertex cut for two vertices u and v is a set of vertices whose removal from the graph disconnects u and v. The local connectivityκ(u, v) is the size of a smallest vertex cut separating u and v. Local connectivity is symmetric for undirected graphs; that is, κ(u, v) = κ(v, u). Moreover, except for complete graphs, κ(G) equals the minimum of κ(u, v) over all nonadjacent pairs of vertices u, v.

2-connectivity is also called biconnectivity and 3-connectivity is also called triconnectivity. A graph G which is connected but not 2-connected is sometimes called separable.

Analogous concepts can be defined for edges. In the simple case in which cutting a single, specific edge would disconnect the graph, that edge is called a bridge . More generally, an edge cut of G is a set of edges whose removal renders the graph disconnected. The edge-connectivity λ(G) is the size of a smallest edge cut, and the local edge-connectivity λ(u, v) of two vertices u, v is the size of a smallest edge cut disconnecting u from v. Again, local edge-connectivity is symmetric. A graph is called k-edge-connected if its edge connectivity is k or greater.

A graph is said to be maximally connected if its connectivity equals its minimum degree. A graph is said to be maximally edge-connected if its edge-connectivity equals its minimum degree. [3]

Super- and hyper-connectivity

A graph is said to be super-connected or super-κ if every minimum vertex cut isolates a vertex. A graph is said to be hyper-connected or hyper-κ if the deletion of each minimum vertex cut creates exactly two components, one of which is an isolated vertex. A graph is semi-hyper-connected or semi-hyper-κ if any minimum vertex cut separates the graph into exactly two components. [4]

More precisely: a G connected graph is said to be super-connected or super-κ if all minimum vertex-cuts consist of the vertices adjacent with one (minimum-degree) vertex. A G connected graph is said to be super-edge-connected or super-λ if all minimum edge-cuts consist of the edges incident on some (minimum-degree) vertex. [5]

A cutset X of G is called a non-trivial cutset if X does not contain the neighborhood N(u) of any vertex uX. Then the superconnectivity of G is

A non-trivial edge-cut and the edge-superconnectivity are defined analogously. [6]

Menger's theorem

One of the most important facts about connectivity in graphs is Menger's theorem, which characterizes the connectivity and edge-connectivity of a graph in terms of the number of independent paths between vertices.

If u and v are vertices of a graph G, then a collection of paths between u and v is called independent if no two of them share a vertex (other than u and v themselves). Similarly, the collection is edge-independent if no two paths in it share an edge. The number of mutually independent paths between u and v is written as κ′(u, v), and the number of mutually edge-independent paths between u and v is written as λ′(u, v).

Menger's theorem asserts that for distinct vertices u,v, λ(u, v) equals λ′(u, v), and if u is also not adjacent to v then κ(u, v) equals κ′(u, v). [7] [8] This fact is actually a special case of the max-flow min-cut theorem.

Computational aspects

The problem of determining whether two vertices in a graph are connected can be solved efficiently using a search algorithm, such as breadth-first search. More generally, it is easy to determine computationally whether a graph is connected (for example, by using a disjoint-set data structure), or to count the number of connected components. A simple algorithm might be written in pseudo-code as follows:

  1. Begin at any arbitrary node of the graph G.
  2. Proceed from that node using either depth-first or breadth-first search, counting all nodes reached.
  3. Once the graph has been entirely traversed, if the number of nodes counted is equal to the number of nodes of G, the graph is connected; otherwise it is disconnected.

By Menger's theorem, for any two vertices u and v in a connected graph G, the numbers κ(u, v) and λ(u, v) can be determined efficiently using the max-flow min-cut algorithm. The connectivity and edge-connectivity of G can then be computed as the minimum values of κ(u, v) and λ(u, v), respectively.

In computational complexity theory, SL is the class of problems log-space reducible to the problem of determining whether two vertices in a graph are connected, which was proved to be equal to L by Omer Reingold in 2004. [9] Hence, undirected graph connectivity may be solved in O(log n) space.

The problem of computing the probability that a Bernoulli random graph is connected is called network reliability and the problem of computing whether two given vertices are connected the ST-reliability problem. Both of these are #P-hard. [10]

Number of connected graphs

The number of distinct connected labeled graphs with n nodes is tabulated in the On-Line Encyclopedia of Integer Sequences as sequence A001187. The first few non-trivial terms are

The number and images of connected graphs with 4 nodes The number of connected graphs with 4 vertices.png
The number and images of connected graphs with 4 nodes
ngraphs
11
21
34
438
5728
626704
71866256
8251548592

Examples

Bounds on connectivity

Other properties

See also

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

<span class="mw-page-title-main">Component (graph theory)</span> Maximal subgraph whose vertices can reach each other

In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Graph (discrete mathematics)</span> Vertices connected in pairs by edges

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices and each of the related pairs of vertices is called an edge. Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics.

<span class="mw-page-title-main">Eulerian path</span> Trail in a graph that visits each edge once

In graph theory, an Eulerian trail is a trail in a finite graph that visits every edge exactly once. Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this:

<span class="mw-page-title-main">Spanning tree</span> Tree which includes all vertices of a graph

In the mathematical field of graph theory, a spanning treeT of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree. If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T.

In the mathematical discipline of graph theory, Menger's theorem says that in a finite graph, the size of a minimum cut set is equal to the maximum number of disjoint paths that can be found between any pair of vertices. Proved by Karl Menger in 1927, it characterizes the connectivity of a graph. It is generalized by the max-flow min-cut theorem, which is a weighted, edge version, and which in turn is a special case of the strong duality theorem for linear programs.

<span class="mw-page-title-main">Bridge (graph theory)</span> Edge in node-link graph whose removal would disconnect the graph

In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Minimum cut</span> Partition of a graph by removing fewest possible edges

In graph theory, a minimum cut or min-cut of a graph is a cut that is minimal in some metric.

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

<i>k</i>-vertex-connected graph Graph which remains connected when k or fewer nodes removed

In graph theory, a connected graph G is said to be k-vertex-connected if it has more than k vertices and remains connected whenever fewer than k vertices are removed.

In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs.

<span class="mw-page-title-main">Well-covered graph</span> Graph with equal-size maximal independent sets

In graph theory, a well-covered graph is an undirected graph in which the minimal vertex covers all have the same size. Here, a vertex cover is a set of vertices that touches all edges, and it is minimal if removing any vertex from it would leave some edge uncovered. Equivalently, well-covered graphs are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970.

The HCS clustering algorithm is an algorithm based on graph connectivity for cluster analysis. It works by representing the similarity data in a similarity graph, and then finding all the highly connected subgraphs. It does not make any prior assumptions on the number of the clusters. This algorithm was published by Erez Hartuv and Ron Shamir in 2000.

References

  1. 1 2 Diestel, R. (2005). "Graph Theory, Electronic Edition". p. 12.
  2. Chapter 11: Digraphs: Principle of duality for digraphs: Definition
  3. Gross, Jonathan L.; Yellen, Jay (2004). Handbook of graph theory. CRC Press. p.  335. ISBN   978-1-58488-090-5.
  4. Liu, Qinghai; Zhang, Zhao (2010-03-01). "The existence and upper bound for two types of restricted connectivity". Discrete Applied Mathematics. 158 (5): 516–521. doi: 10.1016/j.dam.2009.10.017 .
  5. Gross, Jonathan L.; Yellen, Jay (2004). Handbook of graph theory. CRC Press. p.  338. ISBN   978-1-58488-090-5.
  6. Balbuena, Camino; Carmona, Angeles (2001-10-01). "On the connectivity and superconnectivity of bipartite digraphs and graphs". Ars Combinatorica. 61: 3–22. CiteSeerX   10.1.1.101.1458 .
  7. Gibbons, A. (1985). Algorithmic Graph Theory. Cambridge University Press.
  8. Nagamochi, H.; Ibaraki, T. (2008). Algorithmic Aspects of Graph Connectivity. Cambridge University Press.
  9. Reingold, Omer (2008). "Undirected connectivity in log-space". Journal of the ACM . 55 (4): 1–24. doi:10.1145/1391289.1391291. S2CID   207168478.
  10. Provan, J. Scott; Ball, Michael O. (1983). "The complexity of counting cuts and of computing the probability that a graph is connected". SIAM Journal on Computing . 12 (4): 777–788. doi:10.1137/0212053. MR   0721012..
  11. Godsil, C.; Royle, G. (2001). Algebraic Graph Theory. Springer Verlag.
  12. Babai, L. (1996). Automorphism groups, isomorphism, reconstruction. Technical Report TR-94-10. University of Chicago. Archived from the original on 2010-06-11. Chapter 27 of The Handbook of Combinatorics.
  13. Balinski, M. L. (1961). "On the graph structure of convex polyhedra in n-space". Pacific Journal of Mathematics . 11 (2): 431–434. doi: 10.2140/pjm.1961.11.431 .
  14. Dirac, Gabriel Andrew (1960). "In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen". Mathematische Nachrichten . 22 (1–2): 61–85. doi:10.1002/mana.19600220107. MR   0121311..
  15. Flandrin, Evelyne; Li, Hao; Marczyk, Antoni; Woźniak, Mariusz (2007). "A generalization of Dirac's theorem on cycles through k vertices in k-connected graphs". Discrete Mathematics. 307 (7–8): 878–884. doi: 10.1016/j.disc.2005.11.052 . MR   2297171..