In the mathematical field of graph theory, a graph G is symmetric or arc-transitive if, given any two ordered pairs of adjacent vertices and of G, there is an automorphism
such that
In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). [2] Such a graph is sometimes also called 1-arc-transitive [2] or flag-transitive. [3]
By definition (ignoring u1 and u2), a symmetric graph without isolated vertices must also be vertex-transitive. [1] Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since a—b might map to c—d, but not to d—c. Star graphs are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example, semi-symmetric graphs are edge-transitive and regular, but not vertex-transitive.
Every connected symmetric graph must thus be both vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree. [3] However, for even degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric. [4] Such graphs are called half-transitive. [5] The smallest connected half-transitive graph is Holt's graph, with degree 4 and 27 vertices. [1] [6] Confusingly, some authors use the term "symmetric graph" to mean a graph which is vertex-transitive and edge-transitive, rather than an arc-transitive graph. Such a definition would include half-transitive graphs, which are excluded under the definition above.
A distance-transitive graph is one where instead of considering pairs of adjacent vertices (i.e. vertices a distance of 1 apart), the definition covers two pairs of vertices, each the same distance apart. Such graphs are automatically symmetric, by definition. [1]
A t-arc is defined to be a sequence of t + 1 vertices, such that any two consecutive vertices in the sequence are adjacent, and with any repeated vertices being more than 2 steps apart. A t-transitive graph is a graph such that the automorphism group acts transitively on t-arcs, but not on (t + 1)-arcs. Since 1-arcs are simply edges, every symmetric graph of degree 3 or more must be t-transitive for some t, and the value of t can be used to further classify symmetric graphs. The cube is 2-transitive, for example. [1]
Note that conventionally the term "symmetric graph" is not complementary to the term "asymmetric graph," as the latter refers to a graph that has no nontrivial symmetries at all.
Two basic families of symmetric graphs for any number of vertices are the cycle graphs (of degree 2) and the complete graphs. Further symmetric graphs are formed by the vertices and edges of the regular and quasiregular polyhedra: the cube, octahedron, icosahedron, dodecahedron, cuboctahedron, and icosidodecahedron. Extension of the cube to n dimensions gives the hypercube graphs (with 2n vertices and degree n). Similarly extension of the octahedron to n dimensions gives the graphs of the cross-polytopes, this family of graphs (with 2n vertices and degree 2n-2) are sometimes referred to as the cocktail party graphs - they are complete graphs with a set of edges making a perfect matching removed. Additional families of symmetric graphs with an even number of vertices 2n, are the evenly split complete bipartite graphs Kn,n and the crown graphs on 2n vertices. Many other symmetric graphs can be classified as circulant graphs (but not all).
The Rado graph forms an example of a symmetric graph with infinitely many vertices and infinite degree.
Combining the symmetry condition with the restriction that graphs be cubic (i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. They all have an even number of vertices. The Foster census and its extensions provide such lists. [7] The Foster census was begun in the 1930s by Ronald M. Foster while he was employed by Bell Labs, [8] and in 1988 (when Foster was 92 [1] ) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form. [9] The first thirteen items in the list are cubic symmetric graphs with up to 30 vertices [10] [11] (ten of these are also distance-transitive; the exceptions are as indicated):
Vertices | Diameter | Girth | Graph | Notes |
---|---|---|---|---|
4 | 1 | 3 | The complete graph K4 | distance-transitive, 2-arc-transitive |
6 | 2 | 4 | The complete bipartite graph K3,3 | distance-transitive, 3-arc-transitive |
8 | 3 | 4 | The vertices and edges of the cube | distance-transitive, 2-arc-transitive |
10 | 2 | 5 | The Petersen graph | distance-transitive, 3-arc-transitive |
14 | 3 | 6 | The Heawood graph | distance-transitive, 4-arc-transitive |
16 | 4 | 6 | The Möbius–Kantor graph | 2-arc-transitive |
18 | 4 | 6 | The Pappus graph | distance-transitive, 3-arc-transitive |
20 | 5 | 5 | The vertices and edges of the dodecahedron | distance-transitive, 2-arc-transitive |
20 | 5 | 6 | The Desargues graph | distance-transitive, 3-arc-transitive |
24 | 4 | 6 | The Nauru graph (the generalized Petersen graph G(12,5)) | 2-arc-transitive |
26 | 5 | 6 | The F26A graph [11] | 1-arc-transitive |
28 | 4 | 7 | The Coxeter graph | distance-transitive, 3-arc-transitive |
30 | 4 | 8 | The Tutte–Coxeter graph | distance-transitive, 5-arc-transitive |
Other well known cubic symmetric graphs are the Dyck graph, the Foster graph and the Biggs–Smith graph. The ten distance-transitive graphs listed above, together with the Foster graph and the Biggs–Smith graph, are the only cubic distance-transitive graphs.
The vertex-connectivity of a symmetric graph is always equal to the degree d. [3] In contrast, for vertex-transitive graphs in general, the vertex-connectivity is bounded below by 2(d + 1)/3. [2]
A t-transitive graph of degree 3 or more has girth at least 2(t – 1). However, there are no finite t-transitive graphs of degree 3 or more for t ≥ 8. In the case of the degree being exactly 3 (cubic symmetric graphs), there are none for t ≥ 6.
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.
In the mathematical field of graph theory, an automorphism is a permutation of the vertices such that edges are mapped to edges and non-edges are mapped to non-edges. A graph is a vertex-transitive graph if, given any two vertices v1 and v2 of G, there is an automorphism f such that
In the mathematical field of graph theory, an edge-transitive graph is a graph G such that, given any two edges e1 and e2 of G, there is an automorphism of G that maps e1 to e2.
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.
In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.
In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter.
In the mathematical field of graph theory, the Pappus graph is a bipartite, 3-regular, undirected graph with 18 vertices and 27 edges, formed as the Levi graph of the Pappus configuration. It is named after Pappus of Alexandria, an ancient Greek mathematician who is believed to have discovered the "hexagon theorem" describing the Pappus configuration. All the cubic, distance-regular graphs are known; the Pappus graph is one of the 13 such graphs.
In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges.
In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.
In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity.
In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.
In the mathematical field of graph theory, the Biggs–Smith graph is a 3-regular graph with 102 vertices and 153 edges.
In the mathematical field of graph theory, the Dyck graph is a 3-regular graph with 32 vertices and 48 edges, named after Walther von Dyck.
In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.
In the mathematical field of graph theory, the F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges.
In the mathematical field of graph theory, the Ljubljana graph is an undirected bipartite graph with 112 vertices and 168 edges, rediscovered in 2002 and named after Ljubljana.
In the mathematical field of graph theory, a half-transitive graph is a graph that is both vertex-transitive and edge-transitive, but not symmetric. In other words, a graph is half-transitive if its automorphism group acts transitively upon both its vertices and its edges, but not on ordered pairs of linked vertices.
In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges. It is named after W. T. Tutte.
Italo Jose Dejter is an Argentine-born American mathematician, a retired professor of mathematics and computer science from the University of Puerto Rico, and a researcher in algebraic topology, differential topology, graph theory, coding theory and combinatorial designs. He obtained a Licentiate degree in mathematics from University of Buenos Aires in 1967, arrived at Rutgers University in 1970 by means of a Guggenheim Fellowship and obtained a Ph.D. degree in mathematics in 1975 under the supervision of Professor Ted Petrie, with support of the National Science Foundation. He was a professor at the Federal University of Santa Catarina, Brazil, from 1977 to 1984, with grants from the National Council for Scientific and Technological Development, (CNPq).
In the mathematical field of graph theory, the Klein graphs are two different but related regular graphs, each with 84 edges. Each can be embedded in the orientable surface of genus 3, in which they form dual graphs.