Pappus graph

Last updated
Pappus graph
Pappus graph LS.svg
The Pappus graph.
Named after Pappus of Alexandria
Vertices 18
Edges 27
Radius 4
Diameter 4
Girth 6
Automorphisms 216
Chromatic number 2
Chromatic index 3
Book thickness 3
Queue number 2
Properties Bipartite
Symmetric
Distance-transitive
Distance-regular
Cubic
Hamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the Pappus graph is a bipartite 3-regular undirected graph with 18 vertices and 27 edges, formed as the Levi graph of the Pappus configuration. [1] It is named after Pappus of Alexandria, an ancient Greek mathematician who is believed to have discovered the "hexagon theorem" describing the Pappus configuration. All the cubic distance-regular graphs are known; the Pappus graph is one of the 13 such graphs. [2]

Contents

The Pappus graph has rectilinear crossing number 5, and is the smallest cubic graph with that crossing number (sequence A110507 in the OEIS ). It has girth 6, diameter 4, radius 4, chromatic number 2, chromatic index 3 and is both 3-vertex-connected and 3-edge-connected. It has book thickness 3 and queue number 2. [3]

The Pappus graph has a chromatic polynomial equal to: .

The name "Pappus graph" has also been used to refer to a related nine-vertex graph, [4] with a vertex for each point of the Pappus configuration and an edge for every pair of points on the same line; this nine-vertex graph is 6-regular, is the complement graph of the union of three disjoint triangle graphs, and is the complete tripartite graph K3,3,3. The first Pappus graph can be embedded in the torus to form a self-Petrie dual regular map with nine hexagonal faces; the second, to form a regular map with 18 triangular faces. The two regular toroidal maps are dual to each other.

Algebraic properties

The automorphism group of the Pappus graph is a group of order 216. It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore the Pappus graph is a symmetric graph. It has automorphisms that take any vertex to any other vertex and any edge to any other edge. According to the Foster census, the Pappus graph, referenced as F018A, is the only cubic symmetric graph on 18 vertices. [5] [6]

The characteristic polynomial of the Pappus graph is . It is the only graph with this characteristic polynomial, making it a graph determined by its spectrum.

Related Research Articles

Petersen graph

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

Heawood graph

In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.

Desargues graph

In the mathematical field of graph theory, the Desargues graph is a distance-transitive cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.

Coxeter graph

In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter.

Foster graph

In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges.

Möbius–Kantor graph

In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.

Shrikhande graph

In the mathematical field of graph theory, the Shrikhande graph is a named graph discovered by S. S. Shrikhande in 1959. It is a strongly regular graph with 16 vertices and 48 edges, with each vertex having degree 6. Every pair of nodes has exactly two other neighbors in common, whether the pair of nodes is connected or not.

Regular map (graph theory) Symmetric tessellation of a closed surface

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

Franklin graph

In the mathematical field of graph theory, the Franklin graph is a 3-regular graph with 12 vertices and 18 edges.

Folkman graph

In the mathematical field of graph theory, the Folkman graph, named after Jon Folkman, is a bipartite 4-regular graph with 20 vertices and 40 edges.

Clebsch graph

In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge variant is the order-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the order-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason (1955), who used it to evaluate the Ramsey number R(3,3,3) = 17.

Biggs–Smith graph

In the mathematical field of graph theory, the Biggs–Smith graph is a 3-regular graph with 102 vertices and 153 edges.

Dyck graph

In the mathematical field of graph theory, the Dyck graph is a 3-regular graph with 32 vertices and 48 edges, named after Walther von Dyck.

Nauru graph

In the mathematical field of graph theory, the Nauru graph is a symmetric bipartite cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.

F26A graph

In the mathematical field of graph theory, the F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges.

Horton graph

In the mathematical field of graph theory, the Horton graph or Horton 96-graph is a 3-regular graph with 96 vertices and 144 edges discovered by Joseph Horton. Published by Bondy and Murty in 1976, it provides a counterexample to the Tutte conjecture that every cubic 3-connected bipartite graph is Hamiltonian.

Ljubljana graph

In the mathematical field of graph theory, the Ljubljana graph is an undirected bipartite graph with 112 vertices and 168 edges.

Hoffman graph

In the mathematical field of graph theory, the Hoffman graph is a 4-regular graph with 16 vertices and 32 edges discovered by Alan Hoffman. Published in 1963, it is cospectral to the hypercube graph Q4.

Tutte 12-cage

In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges named after W. T. Tutte.

110-vertex Iofinova-Ivanov graph

The 110-vertex Iofinova-Ivanov graph is, in graph theory, a semi-symmetric cubic graph with 110 vertices and 165 edges.

References

  1. Weisstein, Eric W. "Pappus Graph". MathWorld .
  2. Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular Graphs. New York: Springer-Verlag, 1989.
  3. Jessica Wolz, Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  4. Kagno, I. N. (1947), "Desargues' and Pappus' graphs and their groups", American Journal of Mathematics, The Johns Hopkins University Press, 69 (4): 859–863, doi:10.2307/2371806, JSTOR   2371806
  5. Royle, G. "Cubic Symmetric Graphs (The Foster Census)."
  6. Conder, M. and Dobcsányi, P. "Trivalent Symmetric Graphs Up to 768 Vertices." J. Combin. Math. Combin. Comput. 40, 41-63, 2002.