Distance-regular graph

Last updated
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive,t  2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and the distance between v and w.

Contents

Some authors exclude the complete graphs and disconnected graphs from this definition.

Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group.

Intersection arrays

The intersection array of a distance-regular graph is the array in which is the diameter of the graph and for each , gives the number of neighbours of at distance from and gives the number of neighbours of at distance from for any pair of vertices and at distance . There is also the number that gives the number of neighbours of at distance from . The numbers are called the intersection numbers of the graph. They satisfy the equation where is the valency, i.e., the number of neighbours, of any vertex.

It turns out that a graph of diameter is distance regular if and only if it has an intersection array in the preceding sense.

Cospectral and disconnected distance-regular graphs

A pair of connected distance-regular graphs are cospectral if their adjacency matrices have the same spectrum. This is equivalent to their having the same intersection array.

A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs.

Properties

Suppose is a connected distance-regular graph of valency with intersection array . For each let denote the number of vertices at distance from any given vertex and let denote the -regular graph with adjacency matrix formed by relating pairs of vertices on at distance .

Graph-theoretic properties

Spectral properties

If is strongly regular, then and .

Examples

The degree 7 Klein graph and associated map embedded in an orientable surface of genus 3. This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7). Klein-map.png
The degree 7 Klein graph and associated map embedded in an orientable surface of genus 3. This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7).

Some first examples of distance-regular graphs include:

Classification of distance-regular graphs

There are only finitely many distinct connected distance-regular graphs of any given valency . [1]

Similarly, there are only finitely many distinct connected distance-regular graphs with any given eigenvalue multiplicity [2] (with the exception of the complete multipartite graphs).

Cubic distance-regular graphs

The cubic distance-regular graphs have been completely classified.

The 13 distinct cubic distance-regular graphs are K4 (or Tetrahedral graph), K3,3, the Petersen graph, the Cubical graph, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte–Coxeter graph, the Dodecahedral graph, the Desargues graph, Tutte 12-cage, the Biggs–Smith graph, and the Foster graph.

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree k is called a k‑regular graph or regular graph of degree k. Also, from the handshaking lemma, a regular graph contains an even number of vertices with odd degree.

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Random graph</span> Graph generated by a random process

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a complete subgraph of a given size. It is one of the central results of extremal graph theory, an area studying the largest or smallest graphs with given properties, and is a special case of the forbidden subgraph problem on the maximum number of edges in a graph that does not have a given subgraph.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

<span class="mw-page-title-main">Strongly regular graph</span> Concept in graph theory

In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers

In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.

<span class="mw-page-title-main">Johnson graph</span> Class of undirected graphs defined from systems of sets

Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph are the -element subsets of an -element set; two vertices are adjacent when the intersection of the two vertices (subsets) contains -elements. Both Johnson graphs and the closely related Johnson scheme are named after Selmer M. Johnson.

In graph theory, a graph is said to be a pseudorandom graph if it obeys certain properties that random graphs obey with high probability. There is no concrete definition of graph pseudorandomness, but there are many reasonable characterizations of pseudorandomness one can consider.

The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets and is always close to the expected number of edges between them in a random -regular graph, namely .

In coding theory, Zemor's algorithm, designed and developed by Gilles Zemor, is a recursive low-complexity approach to code construction. It is an improvement over the algorithm of Sipser and Spielman.

In computing, a distance oracle (DO) is a data structure for calculating distances between vertices in a graph.

In discrete mathematics, a walk-regular graph is a simple graph where the number of closed walks of any length from a vertex to itself does not depend on the choice of vertex.

In graph theory, Grassmann graphs are a special class of simple graphs defined from systems of subspaces. The vertices of the Grassmann graph Jq(n, k) are the k-dimensional subspaces of an n-dimensional vector space over a finite field of order q; two vertices are adjacent when their intersection is (k – 1)-dimensional.

In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a -regular graph, meaning a graph in which every vertex has degree . The reason for the interest in the second-largest eigenvalue is that the largest eigenvalue is guaranteed to be due to -regularity, with the all-ones vector being the associated eigenvector. The graphs that come close to meeting this bound are Ramanujan graphs, which are examples of the best possible expander graphs.

In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas.

References

  1. Bang, S.; Dubickas, A.; Koolen, J. H.; Moulton, V. (2015-01-10). "There are only finitely many distance-regular graphs of fixed valency greater than two". Advances in Mathematics . 269 (Supplement C): 1–55. arXiv: 0909.5253 . doi: 10.1016/j.aim.2014.09.025 . S2CID   18869283.
  2. Godsil, C. D. (1988-12-01). "Bounding the diameter of distance-regular graphs". Combinatorica . 8 (4): 333–343. doi:10.1007/BF02189090. ISSN   0209-9683. S2CID   206813795.

Further reading