Petersen graph | |
---|---|
Named after | Julius Petersen |
Vertices | 10 |
Edges | 15 |
Radius | 2 |
Diameter | 2 |
Girth | 5 |
Automorphisms | 120 (S5) |
Chromatic number | 3 |
Chromatic index | 4 |
Fractional chromatic index | 3 |
Genus | 1 |
Properties | Cubic Strongly regular Distance-transitive Snark |
Table of graphs and parameters |
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. [1] [2]
Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by A. B.Kempe ( 1886 ). Kempe observed that its vertices can represent the ten lines of the Desargues configuration, and its edges represent pairs of lines that do not meet at one of the ten points of the configuration. [3]
Donald Knuth states that the Petersen graph is "a remarkable configuration that serves as a counterexample to many optimistic predictions about what might be true for graphs in general." [4]
The Petersen graph also makes an appearance in tropical geometry. The cone over the Petersen graph is naturally identified with the moduli space of five-pointed rational tropical curves.
The Petersen graph is the complement of the line graph of . It is also the Kneser graph ; this means that it has one vertex for each 2-element subset of a 5-element set, and two vertices are connected by an edge if and only if the corresponding 2-element subsets are disjoint from each other. As a Kneser graph of the form it is an example of an odd graph.
Geometrically, the Petersen graph is the graph formed by the vertices and edges of the hemi-dodecahedron, that is, a dodecahedron with opposite points, lines and faces identified together.
The Petersen graph is nonplanar. Any nonplanar graph has as minors either the complete graph , or the complete bipartite graph , but the Petersen graph has both as minors. The minor can be formed by contracting the edges of a perfect matching, for instance the five short edges in the first picture. The minor can be formed by deleting one vertex (for instance the central vertex of the 3-symmetric drawing) and contracting an edge incident to each neighbor of the deleted vertex.
The most common and symmetric plane drawing of the Petersen graph, as a pentagram within a pentagon, has five crossings. However, this is not the best drawing for minimizing crossings; there exists another drawing (shown in the figure) with only two crossings. Because it is nonplanar, it has at least one crossing in any drawing, and if a crossing edge is removed from any drawing it remains nonplanar and has another crossing; therefore, its crossing number is exactly 2. Each edge in this drawing is crossed at most once, so the Petersen graph is 1-planar. On a torus the Petersen graph can be drawn without edge crossings; it therefore has orientable genus 1.
The Petersen graph can also be drawn (with crossings) in the plane in such a way that all the edges have equal length. That is, it is a unit distance graph.
The simplest non-orientable surface on which the Petersen graph can be embedded without crossings is the projective plane. This is the embedding given by the hemi-dodecahedron construction of the Petersen graph (shown in the figure). The projective plane embedding can also be formed from the standard pentagonal drawing of the Petersen graph by placing a cross-cap within the five-point star at the center of the drawing, and routing the star edges through this cross-cap; the resulting drawing has six pentagonal faces. This construction forms a regular map and shows that the Petersen graph has non-orientable genus 1.
The Petersen graph is strongly regular (with signature srg(10,3,0,1)). It is also symmetric, meaning that it is edge transitive and vertex transitive. More strongly, it is 3-arc-transitive: every directed three-edge path in the Petersen graph can be transformed into every other such path by a symmetry of the graph. [5] It is one of only 13 cubic distance-regular graphs. [6]
The automorphism group of the Petersen graph is the symmetric group ; the action of on the Petersen graph follows from its construction as a Kneser graph. The Petersen graph is a core: every homomorphism of the Petersen graph to itself is an automorphism. [7] As shown in the figures, the drawings of the Petersen graph may exhibit five-way or three-way symmetry, but it is not possible to draw the Petersen graph in the plane in such a way that the drawing exhibits the full symmetry group of the graph.
Despite its high degree of symmetry, the Petersen graph is not a Cayley graph. It is the smallest vertex-transitive graph that is not a Cayley graph. [a]
The Petersen graph has a Hamiltonian path but no Hamiltonian cycle. It is the smallest bridgeless cubic graph with no Hamiltonian cycle. It is hypohamiltonian, meaning that although it has no Hamiltonian cycle, deleting any vertex makes it Hamiltonian, and is the smallest hypohamiltonian graph.
As a finite connected vertex-transitive graph that does not have a Hamiltonian cycle, the Petersen graph is a counterexample to a variant of the Lovász conjecture, but the canonical formulation of the conjecture asks for a Hamiltonian path and is verified by the Petersen graph.
Only five connected vertex-transitive graphs with no Hamiltonian cycles are known: the complete graph K2, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter graphs by replacing each vertex with a triangle. [6] If G is a 2-connected, r-regular graph with at most 3r + 1 vertices, then G is Hamiltonian or G is the Petersen graph. [8]
To see that the Petersen graph has no Hamiltonian cycle, consider the edges in the cut disconnecting the inner 5-cycle from the outer one. If there is a Hamiltonian cycle C, it must contain an even number of these edges. If it contains only two of them, their end-vertices must be adjacent in the two 5-cycles, which is not possible. Hence, it contains exactly four of them. Assume that the top edge of the cut is not contained in C (all the other cases are the same by symmetry). Of the five edges in the outer cycle, the two top edges must be in C, the two side edges must not be in C, and hence the bottom edge must be in C. The top two edges in the inner cycle must be in C, but this completes a non-spanning cycle, which cannot be part of a Hamiltonian cycle. Alternatively, we can also describe the ten-vertex 3-regular graphs that do have a Hamiltonian cycle and show that none of them is the Petersen graph, by finding a cycle in each of them that is shorter than any cycle in the Petersen graph. Any ten-vertex Hamiltonian 3-regular graph consists of a ten-vertex cycle C plus five chords. If any chord connects two vertices at distance two or three along C from each other, the graph has a 3-cycle or 4-cycle, and therefore cannot be the Petersen graph. If two chords connect opposite vertices of C to vertices at distance four along C, there is again a 4-cycle. The only remaining case is a Möbius ladder formed by connecting each pair of opposite vertices by a chord, which again has a 4-cycle. Since the Petersen graph has girth five, it cannot be formed in this way and has no Hamiltonian cycle.
The Petersen graph has chromatic number 3, meaning that its vertices can be colored with three colors — but not with two — such that no edge connects vertices of the same color. It has a list coloring with 3 colors, by Brooks' theorem for list colorings.
The Petersen graph has chromatic index 4; coloring the edges requires four colors. As a connected bridgeless cubic graph with chromatic index four, the Petersen graph is a snark. It is the smallest possible snark, and was the only known snark from 1898 until 1946. The snark theorem, a result conjectured by W. T. Tutte and announced in 2001 by Robertson, Sanders, Seymour, and Thomas, [9] states that every snark has the Petersen graph as a minor.
Additionally, the graph has fractional chromatic index 3, proving that the difference between the chromatic index and fractional chromatic index can be as large as 1. The long-standing Goldberg-Seymour Conjecture proposes that this is the largest gap possible.
The Thue number (a variant of the chromatic index) of the Petersen graph is 5.
The Petersen graph requires at least three colors in any (possibly improper) coloring that breaks all of its symmetries; that is, its distinguishing number is three. Except for the complete graphs, it is the only Kneser graph whose distinguishing number is not two. [10]
The Petersen graph:
An Eulerian subgraph of a graph is a subgraph consisting of a subset of the edges of , touching every vertex of an even number of times. These subgraphs are the elements of the cycle space of and are sometimes called cycles. If and are any two graphs, a function from the edges of to the edges of is defined to be cycle-continuous if the pre-image of every cycle of is a cycle of . A conjecture of Jaeger asserts that every bridgeless graph has a cycle-continuous mapping to the Petersen graph. Jaeger showed this conjecture implies the 5-cycle-double-cover conjecture and the Berge-Fulkerson conjecture." [18]
The generalized Petersen graph is formed by connecting the vertices of a regular n-gon to the corresponding vertices of a star polygon with Schläfli symbol {n/k}. [19] [20] For instance, in this notation, the Petersen graph is : it can be formed by connecting corresponding vertices of a pentagon and five-point star, and the edges in the star connect every second vertex. The generalized Petersen graphs also include the n-prism the Dürer graph , the Möbius-Kantor graph , the dodecahedron , the Desargues graph and the Nauru graph .
The Petersen family consists of the seven graphs that can be formed from the Petersen graph by zero or more applications of Δ-Y or Y-Δ transforms. The complete graph K6 is also in the Petersen family. These graphs form the forbidden minors for linklessly embeddable graphs, graphs that can be embedded into three-dimensional space in such a way that no two cycles in the graph are linked. [21]
The Clebsch graph contains many copies of the Petersen graph as induced subgraphs: for each vertex v of the Clebsch graph, the ten non-neighbors of v induce a copy of the Petersen graph.
In mathematics, Tait's conjecture states that "Every 3-connected planar cubic graph has a Hamiltonian cycle through all its vertices". It was proposed by P. G. Tait and disproved by W. T. Tutte, who constructed a counterexample with 25 faces, 69 edges and 46 vertices. Several smaller counterexamples, with 21 faces, 57 edges and 38 vertices, were later proved minimal by Holton & McKay (1988). The condition that the graph be 3-regular is necessary due to polyhedra such as the rhombic dodecahedron, which forms a bipartite graph with six degree-four vertices on one side and eight degree-three vertices on the other side; because any Hamiltonian cycle would have to alternate between the two sides of the bipartition, but they have unequal numbers of vertices, the rhombic dodecahedron is not Hamiltonian.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In the mathematical field of graph theory, an automorphism is a permutation of the vertices such that edges are mapped to edges and non-edges are mapped to non-edges. A graph is a vertex-transitive graph if, given any two vertices v1 and v2 of G, there is an automorphism f such that
In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.
In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.
In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.
In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says:
In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter.
In graph theory, a nowhere-zero flow or NZ flow is a network flow that is nowhere zero. It is intimately connected to coloring planar graphs.
In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.
In the mathematical field of graph theory, Tietze's graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze, who showed in 1910 that the Möbius strip can be subdivided into six regions that all touch each other – three along the boundary of the strip and three along its center line – and therefore that graphs that are embedded onto the Möbius strip may require six colors. The boundary segments of the regions of Tietze's subdivision form an embedding of Tietze's graph.
In graph-theoretic mathematics, a cycle double cover is a collection of cycles in an undirected graph that together include each edge of the graph exactly twice. For instance, for any polyhedral graph, the faces of a convex polyhedron that represents the graph provide a double cover of the graph: each edge belongs to exactly two faces.
In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.
In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. The generalized Petersen graph family was introduced in 1950 by H. S. M. Coxeter and was given its name in 1969 by Mark Watkins.
In the mathematical field of graph theory, the flower snarks form an infinite family of snarks introduced by Rufus Isaacs in 1975.
In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.
In the mathematical field of graph theory, the F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges.
In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge.
The Petersen Graph is a mathematics book about the Petersen graph and its applications in graph theory. It was written by Derek Holton and John Sheehan, and published in 1993 by the Cambridge University Press as volume 7 in their Australian Mathematical Society Lecture Series.
{{citation}}
: CS1 maint: DOI inactive as of December 2024 (link)