Regular polygon

Last updated
Regular polygon
Regular polygon 3 annotated.svg
Regular polygon 4 annotated.svg
Regular polygon 5 annotated.svg
Regular polygon 6 annotated.svg
Regular polygon 7 annotated.svg
Regular polygon 8 annotated.svg
Regular polygon 9 annotated.svg
Regular polygon 10 annotated.svg
Regular polygon 11 annotated.svg
Regular polygon 12 annotated.svg
Regular polygon 13 annotated.svg
Regular polygon 14 annotated.svg
Regular polygon 15 annotated.svg
Regular polygon 16 annotated.svg
Regular polygon 17 annotated.svg
Regular polygon 18 annotated.svg
Regular polygon 19 annotated.svg
Regular polygon 20 annotated.svg
Edges and vertices
Schläfli symbol
Coxeter–Dynkin diagram CDel node 1.pngCDel n.pngCDel node.png
Symmetry group Dn, order 2n
Dual polygon Self-dual
Area
(with side length )
Internal angle
Internal angle sum
Inscribed circle diameter
Circumscribed circle diameter
Properties Convex, cyclic, equilateral, isogonal, isotoxal

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex , star or skew . In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed.

Contents

General properties

Regular convex and star polygons with 3 to 12 vertices labelled with their Schlafli symbols Regular star polygons.svg
Regular convex and star polygons with 3 to 12 vertices labelled with their Schläfli symbols

These properties apply to all regular polygons, whether convex or star:

Symmetry

The symmetry group of an n-sided regular polygon is dihedral group Dn (of order 2n): D2, D3, D4, ... It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all axes pass through a vertex and the midpoint of the opposite side.

Regular convex polygons

All regular simple polygons (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also similar.

An n-sided convex regular polygon is denoted by its Schläfli symbol {n}. For n< 3, we have two degenerate cases:

Monogon {1}
Degenerate in ordinary space. (Most authorities do not regard the monogon as a true polygon, partly because of this, and also because the formulae below do not work, and its structure is not that of any abstract polygon.)
Digon {2}; a "double line segment"
Degenerate in ordinary space. (Some authorities do not regard the digon as a true polygon because of this.)

In certain contexts all the polygons considered will be regular. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular and the faces will be described simply as triangle, square, pentagon, etc.

As a corollary of the annulus chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is p/4 Annuli with same area around unit regular polygons.svg
As a corollary of the annulus chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is π/4

Angles

For a regular convex n-gon, each interior angle has a measure of:

degrees;
radians; or
full turns,

and each exterior angle (i.e., supplementary to the interior angle) has a measure of degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn.

As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line (see apeirogon). For this reason, a circle is not a polygon with an infinite number of sides.

Diagonals

For n> 2, the number of diagonals is ; i.e., 0, 2, 5, 9, ..., for a triangle, square, pentagon, hexagon, ... . The diagonals divide the polygon into 1, 4, 11, 24, ... pieces OEIS:  A007678 .

For a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n.

Points in the plane

For a regular simple n-gon with circumradius R and distances di from an arbitrary point in the plane to the vertices, we have [2]

For higher powers of distances from an arbitrary point in the plane to the vertices of a regular -gon, if

,

then [3]

,

and

,

where is a positive integer less than .

If is the distance from an arbitrary point in the plane to the centroid of a regular -gon with circumradius , then [3]

,

where = 1, 2, …, .

Interior points

For a regular n-gon, the sum of the perpendicular distances from any interior point to the n sides is n times the apothem [4] :p. 72 (the apothem being the distance from the center to any side). This is a generalization of Viviani's theorem for the n = 3 case. [5] [6]

Circumradius

Regular pentagon (n = 5) with side s, circumradius R and apothem a PolygonParameters.png
Regular pentagon (n = 5) with side s, circumradius R and apothem a
Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. Regular polygon side count graph.svg
Graphs of side,s; apothem,a; and area,A of regular polygons of n sides and circumradius 1, with the base,b of a rectangle with the same area. The green line shows the case n = 6 .

The circumradius R from the center of a regular polygon to one of the vertices is related to the side length s or to the apothem a by

For constructible polygons, algebraic expressions for these relationships exist (see Bicentric polygon § Regular polygons).

The sum of the perpendiculars from a regular n-gon's vertices to any line tangent to the circumcircle equals n times the circumradius. [4] :p. 73

The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR2 where R is the circumradius. [4] :p.73

The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR21/4ns2, where s is the side length and R is the circumradius. [4] :p. 73

If are the distances from the vertices of a regular -gon to any point on its circumcircle, then [3]

.

Dissections

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into or 1/2m(m − 1) parallelograms. These tilings are contained as subsets of vertices, edges and faces in orthogonal projections m-cubes. [7] In particular, this is true for any regular polygon with an even number of sides, in which case the parallelograms are all rhombi. The list OEIS:  A006245 gives the number of solutions for smaller polygons.

Example dissections for select even-sided regular polygons
2m 6 8 10 12 14 16 18 20 24 30 4050
Image 6-gon rhombic dissection.svg 8-gon rhombic dissection.svg Sun decagon.svg 12-gon rhombic dissection.svg 14-gon-dissection-star.svg 16-gon rhombic dissection.svg 18-gon-dissection-star.svg 20-gon rhombic dissection.svg 24-gon rhombic dissection.svg 30-gon-dissection-star.svg 40-gon rhombic dissection.svg 50-gon-dissection-star.svg
Rhombs3610152128364566105190300

Area

The area A of a convex regular n-sided polygon having side s, circumradius R, apothem a, and perimeter p is given by [8] [9]

For regular polygons with side s = 1, circumradius R = 1, or apothem a = 1, this produces the following table: [10] (Since as , the area when tends to as grows large.)

Number
of sides
Area when side s = 1Area when circumradius R = 1Area when apothem a = 1
ExactApproximationExactApproximationRelative to
circumcircle area
ExactApproximationRelative to
incircle area
n
3 0.4330127021.2990381050.41349667145.1961524241.653986686
4 11.00000000022.0000000000.636619772244.0000000001.273239544
5 1.7204774012.3776412910.75682672883.6327126401.156328347
6 2.5980762112.5980762110.82699334283.4641016161.102657791
7 3.6339124442.7364101890.87102641573.3710223331.073029735
8 4.8284271252.8284271250.90031631603.3137085001.054786175
9 6.1818241942.8925442440.92072542903.2757321091.042697914
10 7.6942088432.9389262620.93548928403.2491969631.034251515
11 9.3656399072.9735244960.94650224403.2298914231.028106371
12 11.1961524233.0000000000.95492965863.2153903091.023490523
13 13.185768333.0207006170.96151886943.2042122201.019932427
14 15.334501943.0371861750.96676638593.1954086421.017130161
15 [11] 17.64236291 [12] 3.0505248220.9710122088 [13] 3.1883484261.014882824
16 [14] 20.109357973.0614674600.9744953584 [15] 3.1825978781.013052368
17 22.735491903.0705541630.97738774563.1778507521.011541311
18 25.520768193.0781812900.97981553613.1738856531.010279181
19 28.465189433.0846449580.98187298543.1705392381.009213984
20 [16] 31.56875757 [17] 3.0901699440.9836316430 [18] 3.1676888061.008306663
100795.51289883.1395259770.99934215653.1426266051.000329117
1000 79577.209753.1415719830.99999342003.1416029891.000003290
10,000 7957746.8933.1415924480.99999993453.1415927571.000000033
1,000,000 795774715453.1415926541.0000000003.1415926541.000000000
Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity. Polygons comparison.png
Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity.

Of all n-gons with a given perimeter, the one with the largest area is regular. [19]

Constructible polygon

Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [20] :p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon. [20] :pp. 49–50 This led to the question being posed: is it possible to construct all regular n-gons with compass and straightedge? If not, which n-gons are constructible and which are not?

Carl Friedrich Gauss proved the constructibility of the regular 17-gon in 1796. Five years later, he developed the theory of Gaussian periods in his Disquisitiones Arithmeticae . This theory allowed him to formulate a sufficient condition for the constructibility of regular polygons:

A regular n-gon can be constructed with compass and straightedge if n is the product of a power of 2 and any number of distinct Fermat primes (including none).

(A Fermat prime is a prime number of the form ) Gauss stated without proof that this condition was also necessary, but never published his proof. A full proof of necessity was given by Pierre Wantzel in 1837. The result is known as the Gauss–Wantzel theorem.

Equivalently, a regular n-gon is constructible if and only if the cosine of its common angle is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots.

Regular skew polygons

Cube petrie polygon sideview.svg
The cube contains a skew regular hexagon, seen as 6 red edges zig-zagging between two planes perpendicular to the cube's diagonal axis.
Antiprism17.jpg
The zig-zagging side edges of a n-antiprism represent a regular skew 2n-gon, as shown in this 17-gonal antiprism.

A regular skew polygon in 3-space can be seen as nonplanar paths zig-zagging between two parallel planes, defined as the side-edges of a uniform antiprism. All edges and internal angles are equal.

Petrie polygons.png
The Platonic solids (the tetrahedron, cube, octahedron, dodecahedron, and icosahedron) have Petrie polygons, seen in red here, with sides 4, 6, 6, 10, and 10 respectively.

More generally regular skew polygons can be defined in n-space. Examples include the Petrie polygons, polygonal paths of edges that divide a regular polytope into two halves, and seen as a regular polygon in orthogonal projection.

In the infinite limit regular skew polygons become skew apeirogons.

Regular star polygons

Regular star polygons
2 < 2q < p, gcd(p, q) = 1
Regular star polygon 5-2.svg
Regular star polygon 7-2.svg
Regular star polygon 7-3.svg
Schläfli symbol {p/q}
Vertices and Edges p
Density q
Coxeter diagram CDel node 1.pngCDel p.pngCDel rat.pngCDel dq.pngCDel node.png
Symmetry group Dihedral (Dp)
Dual polygon Self-dual
Internal angle
(degrees)
[21]

A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices.

For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the center m times.

The (non-degenerate) regular stars of up to 12 sides are:

m and n must be coprime, or the figure will degenerate.

The degenerate regular stars of up to 12 sides are:

Two interpretations of {6/2}
Grünbaum
{6/2} or 2{3} [22]
Coxeter
2{3} or {6}[2{3}]{6}
Doubly wound hexagon.svg Regular star figure 2(3,1).svg
Doubly-wound hexagonHexagram as a compound
of two triangles

Depending on the precise derivation of the Schläfli symbol, opinions differ as to the nature of the degenerate figure. For example, {6/2} may be treated in either of two ways:

Duality of regular polygons

All regular polygons are self-dual to congruency, and for odd n they are self-dual to identity.

In addition, the regular star figures (compounds), being composed of regular polygons, are also self-dual.

Regular polygons as faces of polyhedra

A uniform polyhedron has regular polygons as faces, such that for every two vertices there is an isometry mapping one into the other (just as there is for a regular polygon).

A quasiregular polyhedron is a uniform polyhedron which has just two kinds of face alternating around each vertex.

A regular polyhedron is a uniform polyhedron which has just one kind of face.

The remaining (non-uniform) convex polyhedra with regular faces are known as the Johnson solids.

A polyhedron having regular triangles as faces is called a deltahedron.

See also

Notes

  1. Hwa, Young Lee (2017). Origami-Constructible Numbers (PDF) (MA thesis). University of Georgia. pp. 55–59.
  2. Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf
  3. 1 2 3 Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications. 11: 335–355.
  4. 1 2 3 4 Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  5. Pickover, Clifford A, The Math Book, Sterling, 2009: p. 150
  6. Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", The College Mathematics Journal 37(5), 2006, pp. 390–391.
  7. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  8. "Math Open Reference" . Retrieved 4 Feb 2014.
  9. "Mathwords".
  10. Results for R = 1 and a = 1 obtained with Maple, using function definition:
    f:=proc(n)optionsoperator,arrow;[[convert(1/4*n*cot(Pi/n),radical),convert(1/4*n*cot(Pi/n),float)],[convert(1/2*n*sin(2*Pi/n),radical),convert(1/2*n*sin(2*Pi/n),float),convert(1/2*n*sin(2*Pi/n)/Pi,float)],[convert(n*tan(Pi/n),radical),convert(n*tan(Pi/n),float),convert(n*tan(Pi/n)/Pi,float)]]endproc
    The expressions for n = 16 are obtained by twice applying the tangent half-angle formula to tan(π/4)
  11. Chakerian, G.D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  12. 1 2 Bold, Benjamin. Famous Problems of Geometry and How to Solve Them, Dover Publications, 1982 (orig. 1969).
  13. Kappraff, Jay (2002). Beyond measure: a guided tour through nature, myth, and number. World Scientific. p. 258. ISBN   978-981-02-4702-7.
  14. 1 2 Are Your Polyhedra the Same as My Polyhedra? Branko Grünbaum (2003), Fig. 3
  15. Regular polytopes, p.95
  16. Coxeter, The Densities of the Regular Polytopes II, 1932, p.53

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Heptadecagon</span> Polygon with 17 edges

In geometry, a heptadecagon, septadecagon or 17-gon is a seventeen-sided polygon.

<span class="mw-page-title-main">Octagon</span> Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Dodecagon</span> Polygon with 12 edges

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon.

<span class="mw-page-title-main">Cupola (geometry)</span> Solid made by joining an n- and 2n-gon with triangles and squares

In geometry, a cupola is a solid formed by joining two polygons, one with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.

<span class="mw-page-title-main">Triacontagon</span> Polygon with 30 edges

In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees.

<span class="mw-page-title-main">Pentadecagon</span> Polygon with 15 edges

In geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Bicentric polygon</span>

In geometry, a bicentric polygon is a tangential polygon which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon. All triangles and all regular polygons are bicentric. On the other hand, a rectangle with unequal sides is not bicentric, because no circle can be tangent to all four sides.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span> Special quadrilateral whose diagonals intersect at right angles

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Planigon</span> Convex polygon which can tile the plane by itself

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds