In geometry, the spiral of Theodorus (also called the square root spiral, Pythagorean spiral, or Pythagoras's snail) [1] is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.
The spiral is started with an isosceles right triangle, with each leg having unit length. Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3. The process then repeats; the th triangle in the sequence is a right triangle with the side lengths and 1, and with hypotenuse . For example, the 16th triangle has sides measuring , 1 and hypotenuse of .
Although all of Theodorus' work has been lost, Plato put Theodorus into his dialogue Theaetetus , which tells of his work. It is assumed that Theodorus had proved that all of the square roots of non-square integers from 3 to 17 are irrational by means of the Spiral of Theodorus. [2]
Plato does not attribute the irrationality of the square root of 2 to Theodorus, because it was well known before him. Theodorus and Theaetetus split the rational numbers and irrational numbers into different categories. [3]
Each of the triangles' hypotenuses gives the square root of the corresponding natural number, with .
Plato, tutored by Theodorus, questioned why Theodorus stopped at . The reason is commonly believed to be that the hypotenuse belongs to the last triangle that does not overlap the figure. [4]
In 1958, Kaleb Williams proved that no two hypotenuses will ever coincide, regardless of how far the spiral is continued. Also, if the sides of unit length are extended into a line, they will never pass through any of the other vertices of the total figure. [4] [5]
Theodorus stopped his spiral at the triangle with a hypotenuse of . If the spiral is continued to infinitely many triangles, many more interesting characteristics are found.
If is the angle of the th triangle (or spiral segment), then: Therefore, the growth of the angle of the next triangle is: [1]
The sum of the angles of the first triangles is called the total angle for the th triangle. It grows proportionally to the square root of , with a bounded correction term : [1] where ( OEIS: A105459 ).
The growth of the radius of the spiral at a certain triangle is
The Spiral of Theodorus approximates the Archimedean spiral. [1] Just as the distance between two windings of the Archimedean spiral equals mathematical constant , as the number of spins of the spiral of Theodorus approaches infinity, the distance between two consecutive windings quickly approaches . [6]
The following table shows successive windings of the spiral approaching pi:
Winding No.: | Calculated average winding-distance | Accuracy of average winding-distance in comparison to π |
---|---|---|
2 | 3.1592037 | 99.44255% |
3 | 3.1443455 | 99.91245% |
4 | 3.14428 | 99.91453% |
5 | 3.142395 | 99.97447% |
As shown, after only the fifth winding, the distance is a 99.97% accurate approximation to . [1]
The question of how to interpolate the discrete points of the spiral of Theodorus by a smooth curve was proposed and answered by Philip J. Davis in 2001 by analogy with Euler's formula for the gamma function as an interpolant for the factorial function. Davis found the function [7] which was further studied by his student Leader [8] and by Iserles. [9] This function can be characterized axiomatically as the unique function that satisfies the functional equation the initial condition and monotonicity in both argument and modulus. [10]
An analytic continuation of Davis' continuous form of the Spiral of Theodorus extends in the opposite direction from the origin. [11]
In the figure the nodes of the original (discrete) Theodorus spiral are shown as small green circles. The blue ones are those, added in the opposite direction of the spiral. Only nodes with the integer value of the polar radius are numbered in the figure. The dashed circle in the coordinate origin is the circle of curvature at .
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.
In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .
In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.
A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral and the logarithmic spiral. Fermat spirals are named after Pierre de Fermat.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio or with approximately equal to 1.618 or 89/55.
The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
Theodorus of Cyrene was an ancient Greek mathematician. The only first-hand accounts of him that survive are in three of Plato's dialogues: the Theaetetus, the Sophist, and the Statesman. In the former dialogue, he posits a mathematical construction now known as the Spiral of Theodorus.
A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.
A golden triangle, also called a sublime triangle, is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality.
In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.
The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:
The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.
Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.