Triangle center

Last updated

Five important triangle centers.
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Reference triangle ^ABC
Angle bisectors and incircle (intersect/centered at incenter I)
Medians (intersect at centroid G)
Perpendicular bisectors and circumcircle (intersect/centered at circumcenter O)
Altitudes (intersect at orthocenter H)
Nine-point circle (centered at nine-point center N which, along with H, G, O, lies on the Euler line e) Triangle centers2.svg
Five important triangle centers.
  Reference triangle ABC
   Angle bisectors and incircle (intersect/centered at incenter I)
   Medians (intersect at centroid G)
   Perpendicular bisectors and circumcircle (intersect/centered at circumcenter O)
   Altitudes (intersect at orthocenter H)
   Nine-point circle (centered at nine-point center N which, along with H, G, O, lies on the Euler line e)

In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

Contents

Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers.

For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally take different positions from each other on all other triangles. The definitions and properties of thousands of triangle centers have been collected in the Encyclopedia of Triangle Centers .

History

Even though the ancient Greeks discovered the classic centers of a triangle they had not formulated any definition of a triangle center. After the ancient Greeks, several special points associated with a triangle like the Fermat point, nine-point center, Lemoine point, Gergonne point, and Feuerbach point were discovered.

During the revival of interest in triangle geometry in the 1980s it was noticed that these special points share some general properties that now form the basis for a formal definition of triangle center. [1] [2] As of 17 June 2022, Clark Kimberling's Encyclopedia of Triangle Centers contains an annotated list of 50,730 triangle centers. [3] Every entry in the Encyclopedia of Triangle Centers is denoted by or where is the positional index of the entry. For example, the centroid of a triangle is the second entry and is denoted by or .

Formal definition

A real-valued function f of three real variables a, b, c may have the following properties:

If a non-zero f has both these properties it is called a triangle center function. If f is a triangle center function and a, b, c are the side-lengths of a reference triangle then the point whose trilinear coordinates are is called a triangle center.

This definition ensures that triangle centers of similar triangles meet the invariance criteria specified above. By convention only the first of the three trilinear coordinates of a triangle center is quoted since the other two are obtained by cyclic permutation of a, b, c. This process is known as cyclicity. [4] [5]

Every triangle center function corresponds to a unique triangle center. This correspondence is not bijective. Different functions may define the same triangle center. For example, the functions and both correspond to the centroid. Two triangle center functions define the same triangle center if and only if their ratio is a function symmetric in a, b, c.

Even if a triangle center function is well-defined everywhere the same cannot always be said for its associated triangle center. For example, let be 0 if and are both rational and 1 otherwise. Then for any triangle with integer sides the associated triangle center evaluates to 0:0:0 which is undefined.

Default domain

In some cases these functions are not defined on the whole of For example, the trilinears of X365 which is the 365th entry in the Encyclopedia of Triangle Centers, are so a, b, c cannot be negative. Furthermore, in order to represent the sides of a triangle they must satisfy the triangle inequality. So, in practice, every function's domain is restricted to the region of where

This region T is the domain of all triangles, and it is the default domain for all triangle-based functions.

Other useful domains

There are various instances where it may be desirable to restrict the analysis to a smaller domain than T. For example:

  • The centers X3, X4, X22, X24, X40 make specific reference to acute triangles, namely that region of T where
  • When differentiating between the Fermat point and X13 the domain of triangles with an angle exceeding 2π/3 is important; in other words, triangles for which any of the following is true:
  • A domain of much practical value since it is dense in T yet excludes all trivial triangles (i.e. points) and degenerate triangles (i.e. lines) is the set of all scalene triangles. It is obtained by removing the planes b = c, c = a, a = b from T.

Domain symmetry

Not every subset DT is a viable domain. In order to support the bisymmetry test D must be symmetric about the planes b = c, c = a, a = b. To support cyclicity it must also be invariant under 2π/3 rotations about the line a = b = c. The simplest domain of all is the line (t, t, t) which corresponds to the set of all equilateral triangles.

Examples

Circumcenter

The point of concurrence of the perpendicular bisectors of the sides of triangle ABC is the circumcenter. The trilinear coordinates of the circumcenter are

Let It can be shown that f is homogeneous:

as well as bisymmetric:

so f is a triangle center function. Since the corresponding triangle center has the same trilinears as the circumcenter, it follows that the circumcenter is a triangle center.

1st isogonic center

Let A'BC be the equilateral triangle having base BC and vertex A' on the negative side of BC and let AB'C and ABC' be similarly constructed equilateral triangles based on the other two sides of triangle ABC. Then the lines AA', BB', CC' are concurrent and the point of concurrence is the 1st isogonal center. Its trilinear coordinates are

Expressing these coordinates in terms of a, b, c, one can verify that they indeed satisfy the defining properties of the coordinates of a triangle center. Hence the 1st isogonic center is also a triangle center.

Fermat point

Let

Then f is bisymmetric and homogeneous so it is a triangle center function. Moreover, the corresponding triangle center coincides with the obtuse angled vertex whenever any vertex angle exceeds 2π/3, and with the 1st isogonic center otherwise. Therefore, this triangle center is none other than the Fermat point.

Non-examples

Brocard points

The trilinear coordinates of the first Brocard point are:

These coordinates satisfy the properties of homogeneity and cyclicity but not bisymmetry. So the first Brocard point is not (in general) a triangle center. The second Brocard point has trilinear coordinates:

and similar remarks apply.

The first and second Brocard points are one of many bicentric pairs of points, [6] pairs of points defined from a triangle with the property that the pair (but not each individual point) is preserved under similarities of the triangle. Several binary operations, such as midpoint and trilinear product, when applied to the two Brocard points, as well as other bicentric pairs, produce triangle centers.

Some well-known triangle centers

Classical triangle centers

ETC reference;
Name; Symbol
Trilinear coordinatesDescription
X1 Incenter IIntersection of the angle bisectors. Center of the triangle's inscribed circle.
X2 Centroid GIntersection of the medians. Center of mass of a uniform triangular lamina.
X3 Circumcenter OIntersection of the perpendicular bisectors of the sides. Center of the triangle's circumscribed circle.
X4 Orthocenter HIntersection of the altitudes.
X5 Nine-point center NCenter of the circle passing through the midpoint of each side, the foot of each altitude, and the midpoint between the orthocenter and each vertex.
X6 Symmedian point KIntersection of the symmedians – the reflection of each median about the corresponding angle bisector.
X7 Gergonne point GeIntersection of the lines connecting each vertex to the point where the incircle touches the opposite side.
X8 Nagel point NaIntersection of the lines connecting each vertex to the point where an excircle touches the opposite side.
X9 Mittenpunkt M Symmedian point of the excentral triangle (and various equivalent definitions).
X10 Spieker center SpIncenter of the medial triangle. Center of mass of a uniform triangular wireframe.
X11 Feuerbach point FPoint at which the nine-point circle is tangent to the incircle.
X13 Fermat point X [lower-alpha 1] Point that is the smallest possible sum of distances from the vertices.
X15
X16
Isodynamic points S
S
Centers of inversion that transform the triangle into an equilateral triangle.
X17
X18
Napoleon points N
N
Intersection of the lines connecting each vertex to the center of an equilateral triangle pointed outwards (first Napoleon point) or inwards (second Napoleon point), mounted on the opposite side.
X99 Steiner point SVarious equivalent definitions.

Recent triangle centers

In the following table of more recent triangle centers, no specific notations are mentioned for the various points. Also for each center only the first trilinear coordinate f(a,b,c) is specified. The other coordinates can be easily derived using the cyclicity property of trilinear coordinates.

ETC reference; NameCenter function
Year described
X21 Schiffler point 1985
X22 Exeter point 1986
X111 Parry point early 1990s
X173 Congruent isoscelizers point 1989
X174 Yff center of congruence 1987
X175 Isoperimetric point 1985
X179 First Ajima-Malfatti point
X181 Apollonius point 1987
X192 Equal parallelians point 1961
X356 Morley center 1978 [7]
X360 Hofstadter zero point 1992

General classes of triangle centers

Kimberling center

In honor of Clark Kimberling who created the online encyclopedia of more than 32,000 triangle centers, the triangle centers listed in the encyclopedia are collectively called Kimberling centers. [8]

Polynomial triangle center

A triangle center P is called a polynomial triangle center if the trilinear coordinates of P can be expressed as polynomials in a, b, c.

Regular triangle center

A triangle center P is called a regular triangle point if the trilinear coordinates of P can be expressed as polynomials in △, a, b, c, where is the area of the triangle.

Major triangle center

A triangle center P is said to be a major triangle center if the trilinear coordinates of P can be expressed in the form where is a function of the angle X alone and does not depend on the other angles or on the side lengths. [9]

Transcendental triangle center

A triangle center P is called a transcendental triangle center if P has no trilinear representation using only algebraic functions of a, b, c.

Miscellaneous

Isosceles and equilateral triangles

Let f be a triangle center function. If two sides of a triangle are equal (say a = b) then

so two components of the associated triangle center are always equal. Therefore, all triangle centers of an isosceles triangle must lie on its line of symmetry. For an equilateral triangle all three components are equal so all centers coincide with the centroid. So, like a circle, an equilateral triangle has a unique center.

Excenters

Let

This is readily seen to be a triangle center function and (provided the triangle is scalene) the corresponding triangle center is the excenter opposite to the largest vertex angle. The other two excenters can be picked out by similar functions. However, as indicated above only one of the excenters of an isosceles triangle and none of the excenters of an equilateral triangle can ever be a triangle center.

Biantisymmetric functions

A function f is biantisymmetric if

If such a function is also non-zero and homogeneous it is easily seen that the mapping

is a triangle center function. The corresponding triangle center is

On account of this the definition of triangle center function is sometimes taken to include non-zero homogeneous biantisymmetric functions.

New centers from old

Any triangle center function f can be normalized by multiplying it by a symmetric function of a, b, c so that n = 0. A normalized triangle center function has the same triangle center as the original, and also the stronger property that

Together with the zero function, normalized triangle center functions form an algebra under addition, subtraction, and multiplication. This gives an easy way to create new triangle centers. However distinct normalized triangle center functions will often define the same triangle center, for example f and

Uninteresting centers

Assume a, b, c are real variables and let α, β, γ be any three real constants. Let

Then f is a triangle center function and α : β : γ is the corresponding triangle center whenever the sides of the reference triangle are labelled so that a < b < c. Thus every point is potentially a triangle center. However the vast majority of triangle centers are of little interest, just as most continuous functions are of little interest.

Barycentric coordinates

If f is a triangle center function then so is af and the corresponding triangle center is

Since these are precisely the barycentric coordinates of the triangle center corresponding to f it follows that triangle centers could equally well have been defined in terms of barycentrics instead of trilinears. In practice it isn't difficult to switch from one coordinate system to the other.

Binary systems

There are other center pairs besides the Fermat point and the 1st isogonic center. Another system is formed by X3 and the incenter of the tangential triangle. Consider the triangle center function given by:

For the corresponding triangle center there are four distinct possibilities:

Note that the first is also the circumcenter.

Routine calculation shows that in every case these trilinears represent the incenter of the tangential triangle. So this point is a triangle center that is a close companion of the circumcenter.

Bisymmetry and invariance

Reflecting a triangle reverses the order of its sides. In the image the coordinates refer to the (c, b, a) triangle and (using "|" as the separator) the reflection of an arbitrary point is If f is a triangle center function the reflection of its triangle center is which, by bisymmetry, is the same as As this is also the triangle center corresponding to f relative to the (c, b, a) triangle, bisymmetry ensures that all triangle centers are invariant under reflection. Since rotations and translations may be regarded as double reflections they too must preserve triangle centers. These invariance properties provide justification for the definition.

Alternative terminology

Some other names for dilation are uniform scaling, isotropic scaling, homothety, and homothecy.

Non-Euclidean and other geometries

The study of triangle centers traditionally is concerned with Euclidean geometry, but triangle centers can also be studied in non-Euclidean geometry. [10] Spherical triangle centers can be defined using spherical trigonometry. [11] Triangle centers that have the same form for both Euclidean and hyperbolic geometry can be expressed using gyrotrigonometry. [12] [13] [14] In non-Euclidean geometry, the assumption that the interior angles of the triangle sum to 180 degrees must be discarded.

Centers of tetrahedra or higher-dimensional simplices can also be defined, by analogy with 2-dimensional triangles. [14]

Some centers can be extended to polygons with more than three sides. The centroid, for instance, can be found for any polygon. Some research has been done on the centers of polygons with more than three sides. [15] [16]

See also

Notes

  1. actually the 1st isogonic center, but also the Fermat point whenever A,B,C ≤ 2π/3
  1. Kimberling, Clark. "Triangle centers" . Retrieved 2009-05-23. Unlike squares and circles, triangles have many centers. The ancient Greeks found four: incenter, centroid, circumcenter, and orthocenter. A fifth center, found much later, is the Fermat point. Thereafter, points now called nine-point center, symmedian point, Gergonne point, and Feuerbach point, to name a few, were added to the literature. In the 1980s, it was noticed that these special points share some general properties that now form the basis for a formal definition of triangle center
  2. Kimberling, Clark (11 Apr 2018) [1994]. "Central Points and Central Lines in the Plane of a Triangle". Mathematics Magazine. 67 (3): 163–187. doi:10.2307/2690608. JSTOR   2690608.
  3. Kimberling, Clark. "This is PART 26: Centers X(50001) – X(52000)". Encyclopedia of Triangle Centers. Retrieved 17 June 2022.
  4. Weisstein, Eric W. "Triangle Center". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  5. Weisstein, Eric W. "Triangle Center Function". MathWorld–A Wolfram Web Resource. Retrieved 1 July 2009.
  6. Bicentric Pairs of Points, Encyclopedia of Triangle Centers, accessed 2012-05-02
  7. Oakley, Cletus O.; Baker, Justine C. (November 1978). "The Morley Trisector Theorem". The American Mathematical Monthly. 85 (9): 737–745. doi:10.1080/00029890.1978.11994688. ISSN   0002-9890.
  8. Weisstein, Eric W. "Kimberling Center". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  9. Weisstein, Eric W. "Major Triangle Center". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  10. Russell, Robert A. (2019-04-18). "Non-Euclidean Triangle Centers". arXiv: 1608.08190 [math.MG].
  11. Rob, Johnson. "Spherical Trigonometry" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  12. Ungar, Abraham A. (2009). "Hyperbolic Barycentric Coordinates" (PDF). The Australian Journal of Mathematical Analysis and Applications. 6 (1): 1–35., article #18
  13. Ungar, Abraham A. (2010). Hyperbolic triangle centers : the special relativistic approach. Dordrecht: Springer. ISBN   978-90-481-8637-2. OCLC   663096629.
  14. 1 2 Ungar, Abraham Albert (August 2010). Barycentric Calculus in Euclidean and Hyperbolic Geometry. WORLD SCIENTIFIC. doi:10.1142/7740. ISBN   978-981-4304-93-1.
  15. Al-Sharif, Abdullah; Hajja, Mowaffaq; Krasopoulos, Panagiotis T. (November 2009). "Coincidences of Centers of Plane Quadrilaterals". Results in Mathematics. 55 (3–4): 231–247. doi:10.1007/s00025-009-0417-6. ISSN   1422-6383. S2CID   122725235.
  16. Prieto-Martínez, Luis Felipe; Sánchez-Cauce, Raquel (2021-04-02). "Generalization of Kimberling's Concept of Triangle Center for Other Polygons". Results in Mathematics. 76 (2): 81. arXiv: 2004.01677 . doi:10.1007/s00025-021-01388-4. ISSN   1420-9012. S2CID   214795185.

Related Research Articles

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Centroid</span> Mean ("average") position of all the points in a shape

In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in -dimensional Euclidean space.

<span class="mw-page-title-main">Euler line</span> Line constructed from a triangle

In geometry, the Euler line, named after Leonhard Euler, is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Cubic plane curve</span> Type of a mathematical curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Fermat point</span> Triangle center minimizing sum of distances to each vertex

In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

<span class="mw-page-title-main">Nine-point center</span> Triangle center associated with the nine-point circle

In geometry, the nine-point center is a triangle center, a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle. It is so called because it is the center of the nine-point circle, a circle that passes through nine significant points of the triangle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices. The nine-point center is listed as point X(5) in Clark Kimberling's Encyclopedia of Triangle Centers.

<span class="mw-page-title-main">Brocard points</span> Special points within a triangle

In geometry, Brocard points are special points within a triangle. They are named after Henri Brocard (1845–1922), a French mathematician.

<span class="mw-page-title-main">Mittenpunkt</span> Triangle center: symmedian point of the triangles excentral triangle

In geometry, the mittenpunkt of a triangle is a triangle center: a point defined from the triangle that is invariant under Euclidean transformations of the triangle. It was identified in 1836 by Christian Heinrich von Nagel as the symmedian point of the excentral triangle of the given triangle.

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

In triangle geometry, the Steiner point is a particular point associated with a triangle. It is a triangle center and it is designated as the center X(99) in Clark Kimberling's Encyclopedia of Triangle Centers. Jakob Steiner (1796–1863), Swiss mathematician, described this point in 1826. The point was given Steiner's name by Joseph Neuberg in 1886.

In geometry, the congruent isoscelizers point is a special point associated with a plane triangle. It is a triangle center and it is listed as X(173) in Clark Kimberling's Encyclopedia of Triangle Centers. This point was introduced to the study of triangle geometry by Peter Yff in 1989.

<span class="mw-page-title-main">Morley centers</span> Triangle centers found by trisecting each vertex

In plane geometry, the Morley centers are two special points associated with a triangle. Both of them are triangle centers. One of them called first Morley center is designated as X(356) in Clark Kimberling's Encyclopedia of Triangle Centers, while the other point called second Morley center is designated as X(357). The two points are also related to Morley's trisector theorem which was discovered by Frank Morley in around 1899.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Acute and obtuse triangles</span> Triangles without a right angle

An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle. Acute and obtuse triangles are the two different types of oblique triangles — triangles that are not right triangles because they do not have a 90° angle.

<span class="mw-page-title-main">Heptagonal triangle</span> Obtuse triangle formed by the side and diagonals of a regular heptagon

In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon. Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar, and so they are collectively known as the heptagonal triangle. Its angles have measures and and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.