Napoleon points

Last updated

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. [1] The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

Contents

The name "Napoleon points" has also been applied to a different pair of triangle centers, better known as the isodynamic points. [2]

Definition of the points

First Napoleon point

First Napoleon point First Napoleon Point.svg
First Napoleon point

Let ABC be any given plane triangle. On the sides BC, CA, AB of the triangle, construct outwardly drawn equilateral triangles DBC, △ECA, △FAB respectively. Let the centroids of these triangles be X, Y, Z respectively. Then the lines AX, BY, CZ are concurrent. The point of concurrence N1 is the first Napoleon point, or the outer Napoleon point, of the triangle ABC.

The triangle XYZ is called the outer Napoleon triangle of ABC. Napoleon's theorem asserts that this triangle is an equilateral triangle.

In Clark Kimberling's Encyclopedia of Triangle Centers, the first Napoleon point is denoted by X(17). [3]

Second Napoleon point

Second Napoleon point Second Napoleon Point.svg
Second Napoleon point

Let ABC be any given plane triangle. On the sides BC, CA, AB of the triangle, construct inwardly drawn equilateral triangles DBC, △ECA, △FAB respectively. Let the centroids of these triangles be X, Y, Z respectively. Then the lines AX, BY, CZ are concurrent. The point of concurrence N2 is the second Napoleon point, or the inner Napoleon point, of ABC.

The triangle XYZ is called the inner Napoleon triangle of ABC. Napoleon's theorem asserts that this triangle is an equilateral triangle.

In Clark Kimberling's Encyclopedia of Triangle Centers, the second Napoleon point is denoted by X(18). [3]

Two points closely related to the Napoleon points are the Fermat-Torricelli points (ETC's X(13) and X(14)). If instead of constructing lines joining the equilateral triangles' centroids to the respective vertices one now constructs lines joining the equilateral triangles' apices to the respective vertices of the triangle, the three lines so constructed are again concurrent. The points of concurrence are called the Fermat-Torricelli points, sometimes denoted F1 and F2. The intersection of the Fermat line (i.e., that line joining the two Fermat-Torricelli points) and the Napoleon line (i.e., that line joining the two Napoleon points) is the triangle's symmedian point (ETC's X(6)).

Generalizations

The results regarding the existence of the Napoleon points can be generalized in different ways. In defining the Napoleon points we begin with equilateral triangles drawn on the sides of ABC and then consider the centers X, Y, Z of these triangles. These centers can be thought as the vertices of isosceles triangles erected on the sides of triangle ABC with the base angles equal to π/6 (30 degrees). The generalizations seek to determine other triangles that, when erected over the sides of ABC, have concurrent lines joining their external vertices and the vertices of ABC.

Isosceles triangles

A point on the Kiepert hyperbola. KiepertPoint.svg
A point on the Kiepert hyperbola.
Kiepert hyperbola of ^ABC. The hyperbola passes through the vertices A, B, C, the orthocenter O and the centroid G of the triangle. Kiepert Hyperbola.svg
Kiepert hyperbola of ABC. The hyperbola passes through the vertices A, B, C, the orthocenter O and the centroid G of the triangle.

This generalization asserts the following: [4]

If the three triangles XBC, △YCA, △ZAB, constructed on the sides of the given triangle ABC as bases, are similar, isosceles and similarly situated, then the lines AX, BY, CZ concur at a point N.

If the common base angle is θ, then the vertices of the three triangles have the following trilinear coordinates.

The trilinear coordinates of N are

A few special cases are interesting.

Value of θThe point N
G, the centroid of ABC
O, the orthocenter of ABC
The Vecten points
N1, the first Napoleon point X(17)
N2, the second Napoleon point X(18)
F1, the first Fermat–Torricelli point X(13)
F2, the second Fermat–Torricelli point X(14)
The vertex A
The vertex B
The vertex C

Moreover, the locus of N as the base angle θ varies between −π/2 and π/2 is the conic

This conic is a rectangular hyperbola and it is called the Kiepert hyperbola in honor of Ludwig Kiepert (1846–1934), the mathematician who discovered this result. [4] This hyperbola is the unique conic which passes through the five points A, B, C, G, O.

Similar triangles

Generalization of Napoleon point: A special case GeneralisationOfNapoleonPointSpecialCase.svg
Generalization of Napoleon point: A special case

The three triangles XBC, △YCA, △ZAB erected over the sides of the triangle ABC need not be isosceles for the three lines AX, BY, CZ to be concurrent. [5]

If similar triangles XBC, △AYC, △ABZ are constructed outwardly on the sides of any triangle ABC then the lines AX, BY, CZ are concurrent.

Arbitrary triangles

The concurrence of the lines AX, BY, CZ holds even in much relaxed conditions. The following result states one of the most general conditions for the lines AX, BY, CZ to be concurrent. [5]

If triangles XBC, △YCA, △ZAB are constructed outwardly on the sides of any triangle ABC such that
then the lines AX, BY, CZ are concurrent.

The point of concurrency is known as the Jacobi point.

A generalization of Napoleon point GeneralisationOfNapoleonPoint.svg
A generalization of Napoleon point

History

Coxeter and Greitzer state the Napoleon Theorem thus: If equilateral triangles are erected externally on the sides of any triangle, their centers form an equilateral triangle. They observe that Napoleon Bonaparte was a bit of a mathematician with a great interest in geometry. However, they doubt whether Napoleon knew enough geometry to discover the theorem attributed to him. [1]

The earliest recorded appearance of the result embodied in Napoleon's theorem is in an article in The Ladies' Diary appeared in 1825. The Ladies' Diary was an annual periodical which was in circulation in London from 1704 to 1841. The result appeared as part of a question posed by W. Rutherford, Woodburn.

VII. Quest.(1439); by Mr. W. Rutherford, Woodburn." Describe equilateral triangles (the vertices being either all outward or all inward) upon the three sides of any triangle ABC: then the lines which join the centers of gravity of those three equilateral triangles will constitute an equilateral triangle. Required a demonstration."

However, there is no reference to the existence of the so-called Napoleon points in this question. Christoph J. Scriba, a German historian of mathematics, has studied the problem of attributing the Napoleon points to Napoleon in a paper in Historia Mathematica. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of the trigonometric functions

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Morley's trisector theorem</span> 3 intersections of any triangles adjacent angle trisectors form an equilateral triangle

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Fermat point</span> Triangle center minimizing sum of distances to each vertex

In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

<span class="mw-page-title-main">Isodynamic point</span> 2 points about which a triangle can be inverted into an equilateral triangle

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg (1885).

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

In Euclidean geometry, the Erdős–Mordell inequality states that for any triangle ABC and point P inside ABC, the sum of the distances from P to the sides is less than or equal to half of the sum of the distances from P to the vertices. It is named after Paul Erdős and Louis Mordell. Erdős (1935) posed the problem of proving the inequality; a proof was provided two years later by Mordell and D. F. Barrow (1937). This solution was however not very elementary. Subsequent simpler proofs were then found by Kazarinoff (1957), Bankoff (1958), and Alsina & Nelsen (2007).

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

References

  1. 1 2 Coxeter, H. S. M.; Greitzer, S. L. (1967). Geometry Revisited . Mathematical Association of America. pp.  61–64.
  2. Rigby, J. F. (1988). "Napoleon revisited". Journal of Geometry. 33 (1–2): 129–146. doi:10.1007/BF01230612. MR   0963992. S2CID   189876799.
  3. 1 2 Kimberling, Clark. "Encyclopedia of Triangle Centers" . Retrieved 2 May 2012.
  4. 1 2 Eddy, R. H.; Fritsch, R. (June 1994). "The Conics of Ludwig Kiepert: A Comprehensive Lesson in the Geometry of the Triangle" (PDF). Mathematics Magazine. 67 (3): 188–205. doi:10.2307/2690610. JSTOR   2690610 . Retrieved 26 April 2012.
  5. 1 2 de Villiers, Michael (2009). Some Adventures in Euclidean Geometry. Dynamic Mathematics Learning. pp. 138–140. ISBN   9780557102952.
  6. Scriba, Christoph J (1981). "Wie kommt 'Napoleons Satz' zu seinem namen?". Historia Mathematica. 8 (4): 458–459. doi: 10.1016/0315-0860(81)90054-9 .

Further reading