Encyclopedia of Triangle Centers

Last updated

The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. This ressource is hosted at the University of Evansville. It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling. [1]

Contents

As of 6 February 2024, the list identifies over 61,000 triangle centers [2] and is managed cooperatively by an international team of geometry researchers, [3]

This ressource is seen as a pillar of the modern geometry, as in Gibert, Bernard. "Encyclopedia of Triangle Cubics".. In geogebra, this encyclopedia is provided at fingertip by a special command. [4]

Each point in the list is identified by an index number of the form X(n)—for example, X(1) is the incenter. [5] The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The Encyclopedia also includes a glossary of terms and definitions.

Each point in the list is assigned a unique name. In cases where no particular name arises from geometrical or historical considerations, the name of a star is used instead. For example, the 770th point in the list is named point Acamar .

Notable points

The first 10 points listed in the Encyclopedia are:

ETC referenceNameDefinition
X(1) Incenter center of the incircle
X(2) Centroid intersection of the three medians
X(3) Circumcenter center of the circumscribed circle
X(4) orthocenter intersection of the three altitudes
X(5) nine-point center center of the nine-point circle
X(6) symmedian point intersection of the three symmedians
X(7) Gergonne point symmedian point of contact triangle
X(8) Nagel point intersection of lines from each vertex to the corresponding semiperimeter point
X(9) Mittenpunkt symmedian point of the triangle formed by the centers of the three excircles
X(10) Spieker center center of the Spieker circle

Other points with entries in the Encyclopedia include:

ETC referenceName
X(11) Feuerbach point
X(13) Fermat point
X(15), X(16)first and second isodynamic points
X(17), X(18)first and second Napoleon points
X(19) Clawson point
X(20) de Longchamps point
X(21) Schiffler point
X(22) Exeter point
X(39) Brocard midpoint
X(40) Bevan point
X(175) Isoperimetric point
X(176) Equal detour point

Similar, albeit shorter, lists exist for quadri-figures (quadrilaterals and systems of four lines) and polygon geometry.

See also

Related Research Articles

<span class="mw-page-title-main">Incenter</span> Center of the inscribed circle of a triangle

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

<span class="mw-page-title-main">GEOS circle</span>

In geometry, the GEOS circle is derived from the intersection of four lines that are associated with a generalized triangle: the Euler line, the Soddy line, the orthic axis and the Gergonne line. Note that the Euler line is orthogonal to the orthic axis and that the Soddy line is orthogonal to the Gergonne line.

<span class="mw-page-title-main">Spieker circle</span> Inscribed circle of a triangles medial triangle

In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle intersect each other.

<span class="mw-page-title-main">Johnson circles</span> Geometric theorem regarding 3 circles intersecting at a point

In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections : the common point H that they all share, and for each of the three pairs of circles one more intersection point. If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

<span class="mw-page-title-main">Triangle center</span> Point in a triangle that can be seen as its middle under some criteria

In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

<span class="mw-page-title-main">Lester's theorem</span> Several points associated with a scalene triangle lie on the same circle

In Euclidean plane geometry, Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle. The result is named after June Lester, who published it in 1997, and the circle through these points was called the Lester circle by Clark Kimberling. Lester proved the result by using the properties of complex numbers; subsequent authors have given elementary proofs, proofs using vector arithmetic, and computerized proofs. The center of the Lester circle is also a triangle center. It is the center designated as X(1116) in the Encyclopedia of Triangle Centers. Recently, Peter Moses discovered 21 other triangle centers lie on the Lester circle. The points are numbered from X(15535)-X(15555) in the Encyclopedia of Triangle Centers.

de Longchamps point Orthocenter of a triangles anticomplementary triangle

In geometry, the de Longchamps point of a triangle is a triangle center named after French mathematician Gaston Albert Gohierre de Longchamps. It is the reflection of the orthocenter of the triangle about the circumcenter.

<span class="mw-page-title-main">Mittenpunkt</span> Triangle center: symmedian point of the triangles excentral triangle

In geometry, the mittenpunkt of a triangle is a triangle center: a point defined from the triangle that is invariant under Euclidean transformations of the triangle. It was identified in 1836 by Christian Heinrich von Nagel as the symmedian point of the excentral triangle of the given triangle.

<span class="mw-page-title-main">Trisected perimeter point</span>

In geometry, given a triangle ABC, there exist unique points , , and on the sides BC, CA, AB respectively, such that:

In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.

In geometry, the Exeter point is a special point associated with a plane triangle. It is a triangle center and is designated as X(22) in Clark Kimberling's Encyclopedia of Triangle Centers. This was discovered in a computers-in-mathematics workshop at Phillips Exeter Academy in 1986. This is one of the recent triangle centers, unlike the classical triangle centers like centroid, incenter, and Steiner point.

In geometry, the Yff center of congruence is a special point associated with a triangle. This special point is a triangle center and Peter Yff initiated the study of this triangle center in 1987.

In geometry, the equal parallelians point is a special point associated with a plane triangle. It is a triangle center and it is denoted by X(192) in Clark Kimberling's Encyclopedia of Triangle Centers. There is a reference to this point in one of Peter Yff's notebooks, written in 1961.

<span class="mw-page-title-main">Morley centers</span> Triangle centers found by trisecting each vertex

In plane geometry, the Morley centers are two special points associated with a triangle. Both of them are triangle centers. One of them called first Morley center is designated as X(356) in Clark Kimberling's Encyclopedia of Triangle Centers, while the other point called second Morley center is designated as X(357). The two points are also related to Morley's trisector theorem which was discovered by Frank Morley in around 1899.

In geometry, central lines are certain special straight lines that lie in the plane of a triangle. The special property that distinguishes a straight line as a central line is manifested via the equation of the line in trilinear coordinates. This special property is related to the concept of triangle center also. The concept of a central line was introduced by Clark Kimberling in a paper published in 1994.

<span class="mw-page-title-main">Kosnita's theorem</span> Concurrency of lines connecting to certain circles associated with an arbitrary triangle

In Euclidean geometry, Kosnita's theorem is a property of certain circles associated with an arbitrary triangle.

<span class="mw-page-title-main">Vecten points</span> Triangle centers

In Euclidean geometry, the Vecten points are two triangle centers, points associated with any triangle. They may be found by constructing three squares on the sides of the triangle, connecting each square centre by a line to the opposite triangle point, and finding the point where these three lines meet. The outer and inner Vecten points differ according to whether the squares are extended outward from the triangle sides, or inward.

In Euclidean geometry, the Clawson point is a special point in a triangle defined by the trilinear coordinates tan α : tan β : tan γ, where α, β, γ are the interior angles at the triangle vertices A, B, C. It is named after John Wentworth Clawson, who published it 1925 in the American Mathematical Monthly. It is denoted X(19) in Clark Kimberling's Encyclopedia of Triangle Centers.

<span class="mw-page-title-main">Modern triangle geometry</span>

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

References

  1. Triangle Centers and Central Triangles. Congressus numerantium. Utilitas Mathematica Publishing. 1998.
  2. Kimberling, Clark. "Part 31: Centers X(52001) - X(54000)". Encyclopedia of Triangle Centers. Retrieved February 6, 2024.
  3. Kimberling, Clark. "Thanks". Encyclopedia of Triangle Centers. Retrieved February 6, 2024.
  4. "TriangleCenter_Command". Geogebra.
  5. Weisstein, Eric W. "Kimberling Center". MathWorld--A Wolfram Web Resource.