Catalogue of Triangle Cubics

Last updated

The Catalogue of Triangle Cubics is an online resource containing detailed information about more than 1200 cubic curves in the plane of a reference triangle. [1] The resource is maintained by Bernard Gilbert. Each cubic in the resource is assigned a unique identification number of the form "Knnn" where "nnn" denotes three digits. The identification number of the first entry in the catalogue is "K001" which is the Neuberg cubic of the reference triangle ABC. The catalogue provides, among other things, the following information about each of the cubics listed:

Contents

The equations of some of the cubics listed in the Catalogue are so incredibly complicated that the maintainer of the website has refrained from putting up the equation in the webpage of the cubic; instead, a link to a file giving the equation in an unformatted text form is provided. For example, the equation of the cubic K1200 is given as a text file. [2]

First few triangle cubics in the catalogue

The following are the first ten cubics given in the Catalogue.

Identification numberName(s)Equation in barycentric coordinates
K001 Neuberg cubic, 21-point cubic, 37-point cubic
K002 Thomson cubic, 17-point cubic
K003 McCay cubic, Griffiths cubic
K004 Darboux cubic
K005 Napoleon cubic, Feuerbach cubic
K006 Orthocubic
K007 Lucas cubic
K008 Droussent cubic
K009 Lemoine cubic
K010 Simson cubic
First six cubics in the Catalogue of Triangle Cubics Cubics.png
First six cubics in the Catalogue of Triangle Cubics

GeoGebra tool to draw triangle cubics

Tucker cubic (cubic K011 in the Catalogue) of triangle ABC drawn using the GeoGebra command Cubic(A,B,C,11). TuckerCubic.png
Tucker cubic (cubic K011 in the Catalogue) of triangle ABC drawn using the GeoGebra command Cubic(A,B,C,11).

GeoGebra, the software package for interactive geometry, algebra, statistics and calculus application has a built-in tool for drawing the cubics listed in the Catalogue. [3] The command

prints the n-th cubic in the Catalogue for the triangle whose vertices are the three points listed. For example, to print the Thomson cubic of the triangle whose vertices are A, B, C the following command may be issued:

See also

Related Research Articles

Analytic geometry Study of geometry using a coordinate system

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Bisection Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a bisector. The most often considered types of bisectors are the segment bisector and the angle bisector.

Orthocentric system Set of four planar points which are all orthocenters of the triangles formed by the other three

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three.

Cubic plane curve Type of a mathematical curve

In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation

Deltoid curve Roulette curve made from circles with radii that differ by factors of 3 or 1.5

In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius. It is named after the capital Greek letter delta (Δ) which it resembles.

Isogonal conjugate Geometric transformation applied to points with respect to a given triangle

In geometry, the isogonal conjugate of a point P with respect to a triangle ABC is constructed by reflecting the lines PA, PB, and PC about the angle bisectors of A, B, and C respectively. These three reflected lines concur at the isogonal conjugate of P. This is a direct result of the trigonometric form of Ceva's theorem.

Poncelets closure theorem Theorem of 2D geometry

In geometry, Poncelet's closure theorem, also known as Poncelet's porism, states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics. It is named after French engineer and mathematician Jean-Victor Poncelet, who wrote about it in 1822; however, the triangular case was discovered significantly earlier, in 1746 by William Chapple.

In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear. In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

Ideal triangle Type of hyperbolic triangle

In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called triply asymptotic triangles or trebly asymptotic triangles. The vertices are sometimes called ideal vertices. All ideal triangles are congruent.

In geometry, pinwheel tilings are non-periodic tilings defined by Charles Radin and based on a construction due to John Conway. They are the first known non-periodic tilings to each have the property that their tiles appear in infinitely many orientations.

Pseudotriangle

In Euclidean plane geometry, a pseudotriangle (pseudo-triangle) is the simply connected subset of the plane that lies between any three mutually tangent convex sets. A pseudotriangulation (pseudo-triangulations) is a partition of a region of the plane into pseudotriangles, and a pointed pseudotriangulation is a pseudotriangulation in which at each vertex the incident edges span an angle of less than π.

Johnson circles

In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections : the common point H that they all share, and for each of the three pairs of circles one more intersection point. If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

In geometry, trilinear polarity is a certain correspondence between the points in the plane of a triangle not lying on the sides of the triangle and lines in the plane of the triangle not passing through the vertices of the triangle. "Although it is called a polarity, it is not really a polarity at all, for poles of concurrent lines are not collinear points." It was Poncelet (1788–1867), a French engineer and mathematician, who introduced the idea of the trilinear polar of a point in 1865.

This is a glossary of terms relating to computer graphics.

In triangle geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle, the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle and the Artzt parabolas which are parabolas touching two sidelines of the reference triangle at vertices of the triangle. The terminology of triangle conic is widely used in the literature without a formal definition,that is, without precisely formulating the relations a conic should have with the reference triangle so as to qualify it to be called a triangle conic (see,). WolframMathWorld has a page titled "Triangle conics" which gives a list of 42 items without giving a definition of triangle conic. However, Paris Pamfilos in his extensive collection of topics in geometry and topics in other fields related to geometry defines a triangle conic as a "conic circumscribing a triangle ABC or inscribed in a triangle ". The terminology triangle circle is used to denote a circle associated with the reference triangle is some way.

In mathematics, in triangle geometry, Neuberg cubic is a special cubic plane curve in the plane of the reference triangle having several remarkable properties. It is a triangle cubic in that it is associated with the reference triangle. It is named after Joseph Jean Baptiste Neuberg, a Luxembourger mathematician, who first introduced the curve in a paper published in 1884. The curve appears as the first item, with identification number K001, in Bernard Gilbert's Catalogue of Triangle Cubics which is a compilation of extensive information about more than 1200 triangle cubics.

In triangle geometry, a circumcevian triangle is a special triangle associated with the reference triangle and a point in the plane of the triangle. It is also associated with the circumcircle of the reference triangle.

In mathematics, in triangle geometry, McCay cubic is a cubic plane curve in the plane of the reference triangle and associated with it, and having several remarkable properties. It is the third cubic curve in Bernard Gilbert's Catalogue of Triangle Cubics and it is assigned the identification number K003.

Modern triangle geometry

In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid. In fact, Euclid's Elements contains description of the four special points – centroid, incenter, circumcenter and orthocenter - associated with a triangle. Even though Pascal and Ceva in the seventeenth century, Euler in the eighteenth century and Feuerbach in the nineteenth century and many other mathematicians had made important discoveries regarding the properties of the triangle, it was the publication in 1873 of a paper by Emile Lemoine (1840–1912) with the title "On a remarkable point of the triangle" that was considered to have, according to Nathan Altschiller-Court, "laid the foundations...of the modern geometry of the triangle as a whole." The American Mathematical Monthly, in which much of Lemoine's work is published, declared that "To none of these [geometers] more than Émile-Michel-Hyacinthe Lemoine is due the honor of starting this movement of modern triangle geometry". The publication of this paper caused a remarkable upsurge of interest in investigating the properties of the triangle during the last quarter of the nineteenth century and the early years of the twentieth century. A hundred-page article on triangle geometry in Klein's Encyclopedia of Mathematical Sciences published in 1914 bears witness to this upsurge of interest in triangle geometry.

References

  1. Bernard Gilbert. "Catalogue of Triangle Cubics". Cubics in the Triangle Plane. Bernard Gilbert. Retrieved 27 November 2021.
  2. "K1200: a crunodal KHO-cubic". Cubics in the Trangle Plane. Bernard Gilbert. Retrieved 27 November 2021.
  3. "Cubic Command". GeoGebra. GeoGebra. Retrieved 27 November 2021.