In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by JosephNeuberg ( 1885 ). [1]
The isodynamic points were originally defined from certain equalities of ratios (or equivalently of products) of distances between pairs of points. If and are the isodynamic points of a triangle then the three products of distances are equal. The analogous equalities also hold for [2] Equivalently to the product formula, the distances and are inversely proportional to the corresponding triangle side lengths and
and are the common intersection points of the three circles of Apollonius associated with triangle of a triangle the three circles that each pass through one vertex of the triangle and maintain a constant ratio of distances to the other two vertices. [3] Hence, line is the common radical axis for each of the three pairs of circles of Apollonius. The perpendicular bisector of line segment is the Lemoine line, which contains the three centers of the circles of Apollonius. [4]
The isodynamic points and of a triangle may also be defined by their properties with respect to transformations of the plane, and particularly with respect to inversions and Möbius transformations (products of multiple inversions). Inversion of the triangle with respect to an isodynamic point transforms the original triangle into an equilateral triangle. [5] Inversion with respect to the circumcircle of triangle leaves the triangle invariant but transforms one isodynamic point into the other one. [3] More generally, the isodynamic points are equivariant under Möbius transformations: the unordered pair of isodynamic points of a transformation of is equal to the same transformation applied to the pair The individual isodynamic points are fixed by Möbius transformations that map the interior of the circumcircle of to the interior of the circumcircle of the transformed triangle, and swapped by transformations that exchange the interior and exterior of the circumcircle. [6]
As well as being the intersections of the circles of Apollonius, each isodynamic point is the intersection points of another triple of circles. The first isodynamic point is the intersection of three circles through the pairs of points and where each of these circles intersects the circumcircle of triangle to form a lens with apex angle 2π/3. Similarly, the second isodynamic point is the intersection of three circles that intersect the circumcircle to form lenses with apex angle π/3. [6]
The angles formed by the first isodynamic point with the triangle vertices satisfy the equations and Analogously, the angles formed by the second isodynamic point satisfy the equations and [6]
The pedal triangle of an isodynamic point, the triangle formed by dropping perpendiculars from to each of the three sides of triangle is equilateral, [5] as is the triangle formed by reflecting across each side of the triangle. [7] Among all the equilateral triangles inscribed in triangle the pedal triangle of the first isodynamic point is the one with minimum area. [8]
The isodynamic points are the isogonal conjugates of the two Fermat points of triangle and vice versa. [9]
The Neuberg cubic contains both of the isodynamic points. [4]
If a circle is partitioned into three arcs, the first isodynamic point of the arc endpoints is the unique point inside the circle with the property that each of the three arcs is equally likely to be the first arc reached by a Brownian motion starting at that point. That is, the isodynamic point is the point for which the harmonic measure of the three arcs is equal. [10]
Given a univariate polynomial whose zeros are the vertices of a triangle in the complex plane, the isodynamic points of are the zeros of the polynomial Note that is a constant multiple of where is the degree of This construction generalizes isodynamic points to polynomials of degree in the sense that the zeros of the above discriminant are invariant under Möbius transformations. Here the expression is the polar derivative of with pole [11]
Equivalently, with and defined as above, the (generalized) isodynamic points of are the critical values of Here is the expression that appears in the relaxed Newton’s method with relaxation parameter A similar construction exists for rational functions instead of polynomials. [11]
The circle of Apollonius through vertex of triangle may be constructed by finding the two (interior and exterior) angle bisectors of the two angles formed by lines and at vertex and intersecting these bisector lines with line The line segment between these two intersection points is the diameter of the circle of Apollonius. The isodynamic points may be found by constructing two of these circles and finding their two intersection points. [3]
Another compass and straight-edge construction involves finding the reflection of vertex across line (the intersection of circles centered at and through ), and constructing an equilateral triangle inwards on side of the triangle (the apex of this triangle is the intersection of two circles having as their radius). The line crosses the similarly constructed lines and at the first isodynamic point. The second isodynamic point may be constructed similarly but with the equilateral triangles erected outwards rather than inwards. [12]
Alternatively, the position of the first isodynamic point may be calculated from its trilinear coordinates, which are [13] The second isodynamic point uses trilinear coordinates with a similar formula involving in place of
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.
In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.
In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.
In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation
In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.
In geometry, the isogonal conjugate of a point P with respect to a triangle △ABC is constructed by reflecting the lines PA, PB, PC about the angle bisectors of A, B, C respectively. These three reflected lines concur at the isogonal conjugate of P. This is a direct result of the trigonometric form of Ceva's theorem.
In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible or, equivalently, the geometric median of the three vertices. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.
In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.
In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.
In geometry, the Steiner ellipse of a triangle is the unique circumellipse whose center is the triangle's centroid. It is also called the Steiner circumellipse, to distinguish it from the Steiner inellipse. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.
Miquel's theorem is a result in geometry, named after Auguste Miquel, concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sides. It is one of several results concerning circles in Euclidean geometry due to Miquel, whose work was published in Liouville's newly founded journal Journal de mathématiques pures et appliquées.
In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers.
In geometry, a circular triangle is a triangle with circular arc edges.
In Euclidean geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two sidelines of the reference triangle at vertices of the triangle.
In Euclidean geometry, the Neuberg cubic is a special cubic plane curve associated with a reference triangle with several remarkable properties. It is named after Joseph Jean Baptiste Neuberg, a Luxembourger mathematician, who first introduced the curve in a paper published in 1884. The curve appears as the first item, with identification number K001, in Bernard Gibert's Catalogue of Triangle Cubics which is a compilation of extensive information about more than 1200 triangle cubics.
In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows: