Circles of Apollonius

Last updated

The circles of Apollonius are any of several sets of circles associated with Apollonius of Perga, a renowned Greek geometer. Most of these circles are found in planar Euclidean geometry, but analogs have been defined on other surfaces; for example, counterparts on the surface of a sphere can be defined through stereographic projection.

Contents

The main uses of this term are fivefold:

  1. Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. It is a particular case of the first family described in #2.
  2. The Apollonian circles are two families of mutually orthogonal circles. The first family consists of the circles with all possible distance ratios to two fixed foci (the same circles as in #1), whereas the second family consists of all possible circles that pass through both foci. These circles form the basis of bipolar coordinates.
  3. The circles of Apollonius of a triangle are three circles, each of which passes through one vertex of the triangle and maintains a constant ratio of distances to the other two. The isodynamic points and Lemoine line of a triangle can be solved using these circles of Apollonius.
  4. Apollonius' problem is to construct circles that are simultaneously tangent to three specified circles. The solutions to this problem are sometimes called the circles of Apollonius.
  5. The Apollonian gasket —one of the first fractals ever described—is a set of mutually tangent circles, formed by solving Apollonius' problem iteratively.

Apollonius' definition of a circle

Figure 1. Apollonius' definition of a circle. Apollonius circle definition labels.svg
Figure 1. Apollonius' definition of a circle.

A circle is usually defined as the set of points P at a given distance r (the circle's radius) from a given point (the circle's center). However, there are other, equivalent definitions of a circle. Apollonius discovered that a circle could be defined as the set of points P that have a given ratio of distances k = d1/d2 to two given points (labeled A and B in Figure 1). These two points are sometimes called the foci.

Proof using vectors in Euclidean spaces

Let d1, d2 be non-equal positive real numbers. Let C be the internal division point of AB in the ratio d1 : d2 and D the external division point of AB in the same ratio, d1 : d2.

Then,

Therefore, the point P is on the circle which has the diameter CD.

Proof using the angle bisector theorem

Proof of Apollonius' definition of a circle Proof of Apollonius' definition of a circle.svg
Proof of Apollonius' definition of a circle

First consider the point on the line segment between and , satisfying the ratio. By the definition and from the converse of the angle bisector theorem, the angles and are equal.

Next take the other point on the extended line that satisfies the ratio. So Also take some other point anywhere on the extended line . Again by the converse of the angle bisector theorem, the line bisects the exterior angle . Hence, and are equal and . Hence by Thales's theorem lies on the circle which has as a diameter.

Apollonius pursuit problem

The Apollonius pursuit problem is one of finding whether a ship leaving from one point A at speed vA will intercept another ship leaving a different point B at speed vB. The minimum time in interception of the two ships is calculated by means of straight-line paths. If the ships' speeds are held constant, their speed ratio is defined by μ. If both ships collide or meet at a future point, I, then the distances of each are related by the equation: [1]

Squaring both sides, we obtain:

Expanding:

Further expansion:

Bringing to the left-hand side:

Factoring:

Dividing by  :

Completing the square:

Bring non-squared terms to the right-hand side:

Then:

Therefore, the point must lie on a circle as defined by Apollonius, with their starting points as the foci.

Circles sharing a radical axis

Figure 2. A set of Apollonian circles. Every blue circle intersects every red circle at a right angle, and vice versa. Every red circle passes through the two foci, which correspond to points A and B in Figure 1. Apollonian circles.svg
Figure 2. A set of Apollonian circles. Every blue circle intersects every red circle at a right angle, and vice versa. Every red circle passes through the two foci, which correspond to points A and B in Figure 1.

The circles defined by the Apollonian pursuit problem for the same two points A and B, but with varying ratios of the two speeds, are disjoint from each other and form a continuous family that cover the entire plane; this family of circles is known as a hyperbolic pencil. Another family of circles, the circles that pass through both A and B, are also called a pencil, or more specifically an elliptic pencil. These two pencils of Apollonian circles intersect each other at right angles and form the basis of the bipolar coordinate system. Within each pencil, any two circles have the same radical axis; the two radical axes of the two pencils are perpendicular, and the centers of the circles from one pencil lie on the radical axis of the other pencil.

Solutions to Apollonius' problem

Apollonius' problem may have up to eight solutions. The three given circles are shown in black, whereas the solution circles are colored. Apollonius8ColorMultiplyV2.svg
Apollonius' problem may have up to eight solutions. The three given circles are shown in black, whereas the solution circles are colored.

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane.

Three given circles generically have eight different circles that are tangent to them and each solution circle encloses or excludes the three given circles in a different way: in each solution, a different subset of the three circles is enclosed.

Apollonian gasket

Figure 4. A symmetrical Apollonian gasket, also called the Leibniz packing, after its inventor Gottfried Leibniz Apollonian gasket.svg
Figure 4. A symmetrical Apollonian gasket, also called the Leibniz packing, after its inventor Gottfried Leibniz

By solving Apollonius' problem repeatedly to find the inscribed circle, the interstices between mutually tangential circles can be filled arbitrarily finely, forming an Apollonian gasket, also known as a Leibniz packing or an Apollonian packing. [2] This gasket is a fractal, being self-similar and having a dimension d that is not known exactly but is roughly 1.3, [3] which is higher than that of a regular (or rectifiable) curve (d = 1) but less than that of a plane (d = 2). The Apollonian gasket was first described by Gottfried Leibniz in the 17th century, and is a curved precursor of the 20th-century Sierpiński triangle. [4] The Apollonian gasket also has deep connections to other fields of mathematics; for example, it is the limit set of Kleinian groups; [5] see also Circle packing theorem.

Isodynamic points of a triangle

The circles of Apollonius may also denote three special circles defined by an arbitrary triangle . The circle is defined as the unique circle passing through the triangle vertex that maintains a constant ratio of distances to the other two vertices and (cf. Apollonius' definition of the circle above). Similarly, the circle is defined as the unique circle passing through the triangle vertex that maintains a constant ratio of distances to the other two vertices and , and so on for the circle .

All three circles intersect the circumcircle of the triangle orthogonally. All three circles pass through two points, which are known as the isodynamic points and of the triangle. The line connecting these common intersection points is the radical axis for all three circles. The two isodynamic points are inverses of each other relative to the circumcircle of the triangle.

The centers of these three circles fall on a single line (the Lemoine line ). This line is perpendicular to the radical axis, which is the line determined by the isodynamic points.

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force.

<span class="mw-page-title-main">Similarity (geometry)</span> Property of objects which are scaled or mirrored versions of each other

In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

<span class="mw-page-title-main">Locus (mathematics)</span> Set of points that satisfy some specified conditions

In geometry, a locus is a set of all points, whose location satisfies or is determined by one or more specified conditions.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.

<span class="mw-page-title-main">Apollonian gasket</span> Fractal composed of tangent circles

In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Problem of Apollonius</span> Geometry problem about finding touching circles

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

<span class="mw-page-title-main">Pencil (geometry)</span> Family of geometric objects with a common property

In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.

<span class="mw-page-title-main">Apollonian circles</span> Circles in two perpendicular families

In geometry, Apollonian circles are two families (pencils) of circles such that every circle in the first family intersects every circle in the second family orthogonally, and vice versa. These circles form the basis for bipolar coordinates. They were discovered by Apollonius of Perga, a renowned Greek geometer.

In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space Rn is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian-American mathematician Karl Menger.

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

BIRCH is an unsupervised data mining algorithm used to perform hierarchical clustering over particularly large data-sets. With modifications it can also be used to accelerate k-means clustering and Gaussian mixture modeling with the expectation–maximization algorithm. An advantage of BIRCH is its ability to incrementally and dynamically cluster incoming, multi-dimensional metric data points in an attempt to produce the best quality clustering for a given set of resources. In most cases, BIRCH only requires a single scan of the database.

The distancefrom a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

References

  1. Weintraub, Isaac; Garcia, Eloy; Pachter, Meir (2020). "Optimal guidance strategy for the defense of a non-manoeuvrable target in 3-dimensions". IET Control Theory & Applications. 14 (11): 1531–1538. doi: 10.1049/iet-cta.2019.0541 .
  2. Kasner, E.; Supnick, F. (1943). "The Apollonian packing of circles". Proceedings of the National Academy of Sciences USA. 29 (11): 378–384. Bibcode:1943PNAS...29..378K. doi: 10.1073/pnas.29.11.378 . PMC   1078636 . PMID   16588629.
  3. Boyd, David W. (1973). "Improved Bounds for the Disk Packing Constants". Aequationes Mathematicae . 9: 99–106. doi:10.1007/BF01838194. S2CID   121089590.
    Boyd, David W. (1973). "The Residual Set Dimension of the Apollonian Packing". Mathematika . 20 (2): 170–174. doi:10.1112/S0025579300004745.
    McMullen, Curtis, T. (1998). "Hausdorff dimension and conformal dynamics III: Computation of dimension" (PDF). American Journal of Mathematics. 120 (4): 691–721. doi:10.1353/ajm.1998.0031. S2CID   15928775.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Mandelbrot, B. (1983). The Fractal Geometry of Nature . New York: W.H. Freeman. p.  170. ISBN   978-0-7167-1186-5.
    Aste, T., and Weaire, D. (2008). The Pursuit of Perfect Packing (2nd ed.). New York: Taylor and Francis. pp.  131–138. ISBN   978-1-4200-6817-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Mumford, D., Series, C., and Wright, D. (2002). Indra's Pearls: The Vision of Felix Klein . Cambridge: Cambridge University Press. pp.  196–223. ISBN   0-521-35253-3.{{cite book}}: CS1 maint: multiple names: authors list (link)

Bibliography