Method of exhaustion

Last updated

The method of exhaustion (Latin : methodus exhaustionis) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area between the nth polygon and the containing shape will become arbitrarily small as n becomes large. As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically "exhausted" by the lower bound areas successively established by the sequence members.

Contents

The method of exhaustion typically required a form of proof by contradiction, known as reductio ad absurdum . This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area. The proof involves assuming that the true area is greater than the second area, proving that assertion false, assuming it is less than the second area, then proving that assertion false, too.

History

Gregory of Saint Vincent Gregoire de Saint-Vincent (1584-1667).jpg
Gregory of Saint Vincent

The idea originated in the late 5th century BC with Antiphon, although it is not entirely clear how well he understood it. [1] The theory was made rigorous a few decades later by Eudoxus of Cnidus, who used it to calculate areas and volumes. It was later reinvented in China by Liu Hui in the 3rd century AD in order to find the area of a circle. [2] The first use of the term was in 1647 by Gregory of Saint Vincent in Opus geometricum quadraturae circuli et sectionum.

The method of exhaustion is seen as a precursor to the methods of calculus. The development of analytical geometry and rigorous integral calculus in the 17th-19th centuries subsumed the method of exhaustion so that it is no longer explicitly used to solve problems. An important alternative approach was Cavalieri's principle, also termed the method of indivisibles which eventually evolved into the infinitesimal calculus of Roberval, Torricelli, Wallis, Leibniz, and others.

Euclid

Euclid used the method of exhaustion to prove the following six propositions in the 12th book of his Elements .

Proposition 2: The area of circles is proportional to the square of their diameters. [3]

Proposition 5: The volumes of two tetrahedra of the same height are proportional to the areas of their triangular bases. [4]

Proposition 10: The volume of a cone is a third of the volume of the corresponding cylinder which has the same base and height. [5]

Proposition 11: The volume of a cone (or cylinder) of the same height is proportional to the area of the base. [6]

Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to the cube of the ratio of the diameters of the bases. [7]

Proposition 18: The volume of a sphere is proportional to the cube of its diameter. [8]

Archimedes

Archimedes used the method of exhaustion to compute the area inside a circle Archimedes pi.svg
Archimedes used the method of exhaustion to compute the area inside a circle

Archimedes used the method of exhaustion as a way to compute the area inside a circle by filling the circle with a sequence of polygons with an increasing number of sides and a corresponding increase in area. The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr2, π being defined as the ratio of the circumference to the diameter (C/d).

He also provided the bounds 3 + 10/71 < π < 3 + 10/70, (giving a range of 1/497) by comparing the perimeters of the circle with the perimeters of the inscribed and circumscribed 96-sided regular polygons.

Other results he obtained with the method of exhaustion included [9]

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

<span class="mw-page-title-main">History of geometry</span> Historical development of geometry

Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).

A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Straightedge and compass construction</span> Method of drawing geometric objects

In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

<span class="mw-page-title-main">Apollonius of Perga</span> Ancient Greek geometer and astronomer (c. 240–190 BC)

Apollonius of Perga was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.

The Method of Mechanical Theorems, also referred to as The Method, is one of the major surviving works of the ancient Greek polymath Archimedes. The Method takes the form of a letter from Archimedes to Eratosthenes, the chief librarian at the Library of Alexandria, and contains the first attested explicit use of indivisibles. The work was originally thought to be lost, but in 1906 was rediscovered in the celebrated Archimedes Palimpsest. The palimpsest includes Archimedes' account of the "mechanical method", so called because it relies on the center of weights of figures (centroid) and the law of the lever, which were demonstrated by Archimedes in On the Equilibrium of Planes.

<span class="mw-page-title-main">Semicircle</span> Geometric shape

In mathematics, a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180°. It has only one line of symmetry.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

<span class="mw-page-title-main">Arbelos</span> Plane region bounded by three semicircles

In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line that contains their diameters.

In mathematics, particularly in geometry, quadrature is a historical process of drawing a square with the same area as a given plane figure or computing the numerical value of that area. A classical example is the quadrature of the circle . Quadrature problems served as one of the main sources of problems in the development of calculus. They introduce important topics in mathematical analysis.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<i>Quadrature of the Parabola</i>

Quadrature of the Parabola is a treatise on geometry, written by Archimedes in the 3rd century BC and addressed to his Alexandrian acquaintance Dositheus. It contains 24 propositions regarding parabolas, culminating in two proofs showing that the area of a parabolic segment is that of a certain inscribed triangle.

<i>Measurement of a Circle</i> Treatise by Archimedes

Measurement of a Circle or Dimension of the Circle is a treatise that consists of three propositions by Archimedes, ca. 250 BCE. The treatise is only a fraction of what was a longer work.

The following is a timeline of key developments of geometry:

<span class="mw-page-title-main">Timeline of calculus and mathematical analysis</span> Summary of advancements in Calculus

A timeline of calculus and mathematical analysis.

<span class="mw-page-title-main">Cavalieri's principle</span> Geometry concept

In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:

In mathematics, the signed area or oriented area of a region of an affine plane is its area with orientation specified by the positive or negative sign, that is "plus" () or "minus" (). More generally, the signed area of an arbitrary surface region is its surface area with specified orientation. When the boundary of the region is a simple curve, the signed area also indicates the orientation of the boundary.

References

  1. "Antiphon (480 BC-411 BC)". www-history.mcs.st-andrews.ac.uk.
  2. Dun, Liu. 1966. "A comparison of Archimedes' and Liu Hui's studies of circles." Pp. 279–87 in Chinese Studies in the History and Philosophy of Science and Technology 179, edited by D. Fan, and R. S. Cohen. Kluwer Academic Publishers. ISBN   0-7923-3463-9. p. 279.
  3. "Euclid's Elements, Book XII, Proposition 2". aleph0.clarku.edu.
  4. "Euclid's Elements, Book XII, Proposition 5". aleph0.clarku.edu.
  5. "Euclid's Elements, Book XII, Proposition 10". aleph0.clarku.edu.
  6. "Euclid's Elements, Book XII, Proposition 11". aleph0.clarku.edu.
  7. "Euclid's Elements, Book XII, Proposition 12". aleph0.clarku.edu.
  8. "Euclid's Elements, Book XII, Proposition 18". aleph0.clarku.edu.
  9. Smith, David E (1958). History of Mathematics . New York: Dover Publications. ISBN   0-486-20430-8.