Archimedean spiral

Last updated
Three 360deg loops of one arm of an Archimedean spiral Archimedean spiral.svg
Three 360° loops of one arm of an Archimedean spiral

The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of Archimedes). It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be described by the equation with real number b. Changing the parameter b controls the distance between loops.

Contents

From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses.

Archimedes described such a spiral in his book On Spirals . Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon. [1]

Derivation of general equation of spiral

A physical approach is used below to understand the notion of Archimedean spirals.

Suppose a point object moves in the Cartesian system with a constant velocity v directed parallel to the x-axis, with respect to the xy-plane. Let at time t = 0, the object was at an arbitrary point (c, 0, 0). If the xy plane rotates with a constant angular velocity ω about the z-axis, then the velocity of the point with respect to z-axis may be written as:

The xy plane rotates to an angle ot (anticlockwise) about the origin in time t. (c, 0) is the position of the object at t = 0. P is the position of the object at time t, at a distance of R = vt + c. Spiral derivation...png
The xy plane rotates to an angle ωt (anticlockwise) about the origin in time t. (c, 0) is the position of the object at t = 0. P is the position of the object at time t, at a distance of R = vt + c.

As shown in the figure alongside, we have vt + c representing the modulus of the position vector of the particle at any time t, with vx and vy as the velocity components along the x and y axes, respectively.

The above equations can be integrated by applying integration by parts, leading to the following parametric equations:

Squaring the two equations and then adding (and some small alterations) results in the Cartesian equation (using the fact that ωt = θ and θ = arctan y/x) or

Its polar form is

Arc length and curvature

Osculating circles of the Archimedean spiral, tangent to the spiral and having the same curvature at the tangent point. The spiral itself is not drawn, but can be seen as the points where the circles are especially close to each other. Osculating circles of the Archimedean spiral.svg
Osculating circles of the Archimedean spiral, tangent to the spiral and having the same curvature at the tangent point. The spiral itself is not drawn, but can be seen as the points where the circles are especially close to each other.

Given the parametrization in cartesian coordinates the arc length from θ1 to θ2 is or, equivalently: The total length from θ1 = 0 to θ2 = θ is therefore

The curvature is given by

Characteristics

Archimedean spiral represented on a polar graph Archimedean spiral polar.svg
Archimedean spiral represented on a polar graph

The Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance (equal to 2 πb if θ is measured in radians), hence the name "arithmetic spiral". In contrast to this, in a logarithmic spiral these distances, as well as the distances of the intersection points measured from the origin, form a geometric progression.

The Archimedean spiral has two arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected at the origin. Only one arm is shown on the accompanying graph. Taking the mirror image of this arm across the y-axis will yield the other arm.

For large θ a point moves with well-approximated uniform acceleration along the Archimedean spiral while the spiral corresponds to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity [2] (see contribution from Mikhail Gaichenkov).

As the Archimedean spiral grows, its evolute asymptotically approaches a circle with radius |v|/ω.

General Archimedean spiral

Sometimes the term Archimedean spiral is used for the more general group of spirals

The normal Archimedean spiral occurs when c = 1. Other spirals falling into this group include the hyperbolic spiral (c = −1), Fermat's spiral (c = 2), and the lituus (c = −2).

Applications

One method of squaring the circle, due to Archimedes, makes use of an Archimedean spiral. Archimedes also showed how the spiral can be used to trisect an angle. Both approaches relax the traditional limitations on the use of straightedge and compass in ancient Greek geometric proofs. [3]

Mechanism of a scroll compressor Two moving spirals scroll pump.gif
Mechanism of a scroll compressor

The Archimedean spiral has a variety of real-world applications. Scroll compressors, used for compressing gases, have rotors that can be made from two interleaved Archimedean spirals, involutes of a circle of the same size that almost resemble Archimedean spirals, [4] or hybrid curves.

Archimedean spirals can be found in spiral antenna, which can be operated over a wide range of frequencies.

The coils of watch balance springs and the grooves of very early gramophone records form Archimedean spirals, making the grooves evenly spaced (although variable track spacing was later introduced to maximize the amount of music that could be cut onto a record). [5]

Asking for a patient to draw an Archimedean spiral is a way of quantifying human tremor; this information helps in diagnosing neurological diseases.

Archimedean spirals are also used in digital light processing (DLP) projection systems to minimize the "rainbow effect", making it look as if multiple colors are displayed at the same time, when in reality red, green, and blue are being cycled extremely quickly. [6] Additionally, Archimedean spirals are used in food microbiology to quantify bacterial concentration through a spiral platter. [7]

Atacama Large Millimeter Array image of LL Pegasi Celestial spiral with a twist.jpg
Atacama Large Millimeter Array image of LL Pegasi

They are also used to model the pattern that occurs in a roll of paper or tape of constant thickness wrapped around a cylinder. [8] [9]

Many dynamic spirals (such as the Parker spiral of the solar wind, or the pattern made by a Catherine's wheel) are Archimedean. For instance, the star LL Pegasi shows an approximate Archimedean spiral in the dust clouds surrounding it, thought to be ejected matter from the star that has been shepherded into a spiral by another companion star as part of a double star system. [10]

Construction methods

The Archimedean Spiral cannot be constructed precisely by traditional compass and straightedge methods, since the arithmetic spiral requires the radius of the curve to be incremented constantly as the angle at the origin is incremented. But an arithmetic spiral can be constructed approximately, to varying degrees of precision, by various manual drawing methods. One such method uses compass and straightedge; another method uses a modified string compass.

The common traditional construction uses compass and straightedge to approximate the arithmetic spiral. First, a large circle is constructed and its circumference is subdivided by 12 diameters into 12 arcs (of 30 degrees each; see regular dodecagon). Next, the radius of this circle is itself subdivided into 12 unit segments (radial units), and a series of concentric circles is constructed, each with radius incremented by one radial unit. Starting with the horizontal diameter and the innermost concentric circle, the point is marked where its radius intersects its circumference; one then moves to the next concentric circle and to the next diameter (moving up to construct a counterclockwise spiral, or down for clockwise) to mark the next point. After all points have been marked, successive points are connected by a line approximating the arithmetic spiral (or by a smooth curve of some sort; see French Curve). Depending on the desired degree of precision, this method can be improved by increasing the size of the large outer circle, making more subdivisions of both its circumference and radius, increasing the number of concentric circles (see Polygonal Spiral). Approximating the Archimedean Spiral by this method is of course reminiscent of Archimedes’ famous method of approximating π by doubling the sides of successive polygons (see Polygon approximation of π).

Compass and straightedge construction of the Spiral of Theodorus is another simple method to approximate the Archimedean Spiral.

A mechanical method for constructing the arithmetic spiral uses a modified string compass, where the string wraps and winds (or unwraps/unwinds) about a fixed central pin (that does not pivot), thereby incrementing (or decrementing) the length of the radius (string) as the angle changes (the string winds around the fixed pin which does not pivot). Such a method is a simple way to create an arithmetic spiral, arising naturally from use of a string compass with winding pin (not the loose pivot of a common string compass). The string compass drawing tool has various modifications and designs, and this construction method is reminiscent of string-based methods for creating ellipses (with two fixed pins).

Yet another mechanical method is a variant of the previous string compass method, providing greater precision and more flexibility. Instead of the central pin and string of the string compass, this device uses a non-rotating shaft (column) with helical threads (screw; see Archimedes’ screw) to which are attached two slotted arms: one horizontal arm is affixed to (travels up) the screw threads of the vertical shaft at one end, and holds a drawing tool at the other end; another sloped arm is affixed at one end to the top of the screw shaft, and is joined by a pin loosely fitted in its slot to the slot of the horizontal arm. The two arms rotate together and work in consort to produce the arithmetic spiral: as the horizontal arm gradually climbs the screw, that arm’s slotted attachment to the sloped arm gradually shortens the drawing radius. The angle of the sloped arm remains constant throughout (traces a cone), and setting a different angle varies the pitch of the spiral. This device provides a high degree of precision, depending on the precision with which the device is machined (machining a precise helical screw thread is a related challenge). And of course the use of a screw shaft in this mechanism is reminiscent of Archimedes’ screw.

See also

Related Research Articles

<span class="mw-page-title-main">Arithmetic–geometric mean</span> Mathematical function of two positive real arguments

In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some mathematical constants, in particular, computing π.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x: where k is a positive constant.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Tautochrone curve</span> Curve for which the time to roll to the end is equal for all starting points

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Proper time</span> Elapsed time between two events as measured by a clock that passes through both events

In relativity, proper time along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar. The interval is the quantity of interest, since proper time itself is fixed only up to an arbitrary additive constant, namely the setting of the clock at some event along the world line.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

In projective geometry, the circular points at infinity are two special points at infinity in the complex projective plane that are contained in the complexification of every real circle.

In algebra, casus irreducibilis is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically, i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in the so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.

The Appleton–Hartree equation, sometimes also referred to as the Appleton–Lassen equation, is a mathematical expression that describes the refractive index for electromagnetic wave propagation in a cold magnetized plasma. The Appleton–Hartree equation was developed independently by several different scientists, including Edward Victor Appleton, Douglas Hartree and German radio physicist H. K. Lassen. Lassen's work, completed two years prior to Appleton and five years prior to Hartree, included a more thorough treatment of collisional plasma; but, published only in German, it has not been widely read in the English speaking world of radio physics. Further, regarding the derivation by Appleton, it was noted in the historical study by Gillmor that Wilhelm Altar first calculated the dispersion relation in 1926.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

The direct-quadrature-zerotransformation or zero-direct-quadraturetransformation is a tensor that rotates the reference frame of a three-element vector or a three-by-three element matrix in an effort to simplify analysis. The DQZ transform is the product of the Clarke transform and the Park transform, first proposed in 1929 by Robert H. Park.

The Bowring series of the transverse mercator published in 1989 by Bernard Russel Bowring gave formulas for the Transverse Mercator that are simpler to program but retain millimeter accuracy.

References

  1. Bulmer-Thomas, Ivor. "Conon of Samos". Dictionary of Scientific Biography . Vol. 3. p. 391.
  2. Sloane, N. J. A. (ed.). "SequenceA091154". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. Boyer, Carl B. (1968). A History of Mathematics. Princeton, New Jersey: Princeton University Press. pp. 140–142. ISBN   0-691-02391-3.
  4. Sakata, Hirotsugu; Okuda, Masayuki. "Fluid compressing device having coaxial spiral members" . Retrieved 2006-11-25.
  5. Penndorf, Ron. "Early Development of the LP". Archived from the original on 5 November 2005. Retrieved 2005-11-25.. See the passage on Variable Groove.
  6. Ballou, Glen (2008), Handbook for Sound Engineers, CRC Press, p. 1586, ISBN   9780240809694
  7. Gilchrist, J. E.; Campbell, J. E.; Donnelly, C. B.; Peeler, J. T.; Delaney, J. M. (1973). "Spiral Plate Method for Bacterial Determination". Applied Microbiology. 25 (2): 244–52. doi:10.1128/AEM.25.2.244-252.1973. PMC   380780 . PMID   4632851.
  8. Peressini, Tony (3 February 2009). "Joan's Paper Roll Problem" (PDF). Archived from the original (PDF) on 3 November 2013. Retrieved 2014-10-06.
  9. Walser, H.; Hilton, P.; Pedersen, J. (2000). Symmetry . Mathematical Association of America. p.  27. ISBN   9780883855324 . Retrieved 2014-10-06.
  10. Kim, Hyosun; Trejo, Alfonso; Liu, Sheng-Yuan; Sahai, Raghvendra; Taam, Ronald E.; Morris, Mark R.; Hirano, Naomi; Hsieh, I-Ta (March 2017). "The large-scale nebular pattern of a superwind binary in an eccentric orbit". Nature Astronomy. 1 (3): 0060. arXiv: 1704.00449 . Bibcode:2017NatAs...1E..60K. doi:10.1038/s41550-017-0060. S2CID   119433782.