Velocity

Last updated

Velocity
US Navy 040501-N-1336S-037 The U.S. Navy sponsored Chevy Monte Carlo NASCAR leads a pack into turn four at California Speedway.jpg
As a change of direction occurs while the racing cars turn on the curved track, their velocity is not constant even if their speed is.
Common symbols
v, v, v, v
Other units
mph, ft/s
In SI base units m/s
Dimension LT−1

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

Contents

Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an acceleration .

Definition

Average velocity

The average velocity of an object over a period of time is its change in position, , divided by the duration of the period, , given mathematically as [1]

Instantaneous velocity

Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s (the yellow area under the curve.) Velocity vs time graph.svg
Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s (the yellow area under the curve.)

The instantaneousvelocity of an object is the limit average velocity as the time interval approaches zero. At any particular time t, it can be calculated as the derivative of the position with respect to time: [2]

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, s. In calculus terms, the integral of the velocity function v(t) is the displacement function s(t). In the figure, this corresponds to the yellow area under the curve.

Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Difference between speed and velocity

Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a. Kinematics.svg
Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.

While the terms speed and velocity are often colloquially used interchangeably to connote how fast an object is moving, in scientific terms they are different. Speed, the scalar magnitude of a velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction. [3] [4] [5]

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration.

Units

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s).

Equation of motion

Average velocity

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the average velocity of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as: [6] [7]

The average velocity is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

Special cases

  • When a particle moves with different uniform speeds v1, v2, v3, ..., vn in different time intervals t1, t2, t3, ..., tn respectively, then average speed over the total time of journey is given as

If t1 = t2 = t3 = ... = t, then average speed is given by the arithmetic mean of the speeds

  • When a particle moves different distances s1, s2, s3,..., sn with speeds v1, v2, v3,..., vn respectively, then the average speed of the particle over the total distance is given as [8]

If s1 = s2 = s3 = ... = s, then average speed is given by the harmonic mean of the speeds [8]

Relationship to acceleration

Although velocity is defined as the rate of change of position, it is often common to start with an expression for an object's acceleration. As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v(t) graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time: [9]

From there, velocity is expressed as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

Constant acceleration

In the special case of constant acceleration, velocity can be studied using the suvat equations. By considering a as being equal to some arbitrary constant vector, this shows with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, it is possible to relate the displacement and the average velocity by It is also possible to derive an expression for the velocity independent of time, known as the Torricelli equation, as follows: where v = |v| etc.

The above equations are valid for both Newtonian mechanics and special relativity. Where Newtonian mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in Newtonian mechanics, all observers agree on the value of t and the transformation rules for position create a situation in which all non-accelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity. In other words, only relative velocity can be calculated.

Quantities that are dependent on velocity

Momentum

In classical mechanics, Newton's second law defines momentum, p, as a vector that is the product of an object's mass and velocity, given mathematically as where m is the mass of the object.

Kinetic energy

The kinetic energy of a moving object is dependent on its velocity and is given by the equation [10] where Ek is the kinetic energy. Kinetic energy is a scalar quantity as it depends on the square of the velocity.

Drag (fluid resistance)

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. The drag force, , is dependent on the square of velocity and is given as where

Escape velocity

Escape velocity is the minimum speed a ballistic object needs to escape from a massive body such as Earth. It represents the kinetic energy that, when added to the object's gravitational potential energy (which is always negative), is equal to zero. The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of the base body as long as it does not intersect with something in its path.

The Lorentz factor of special relativity

In special relativity, the dimensionless Lorentz factor appears frequently, and is given by [13] where γ is the Lorentz factor and c is the speed of light.

Relative velocity

Relative velocity is a measurement of velocity between two objects as determined in a single coordinate system. Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles.

Consider an object A moving with velocity vector v and an object B with velocity vector w; these absolute velocities are typically expressed in the same inertial reference frame. Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: Similarly, the relative velocity of object B moving with velocity w, relative to object A moving with velocity v is: Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest.

In Newtonian mechanics, the relative velocity is independent of the chosen inertial reference frame. This is not the case anymore with special relativity in which velocities depend on the choice of reference frame.

Scalar velocities

In the one-dimensional case, [14] the velocities are scalars and the equation is either: if the two objects are moving in opposite directions, or: if the two objects are moving in the same direction.

Coordinate systems

Cartesian coordinates

In multi-dimensional Cartesian coordinate systems, velocity is broken up into components that correspond with each dimensional axis of the coordinate system. In a two-dimensional system, where there is an x-axis and a y-axis, corresponding velocity components are defined as [15]

The two-dimensional velocity vector is then defined as . The magnitude of this vector represents speed and is found by the distance formula as

In three-dimensional systems where there is an additional z-axis, the corresponding velocity component is defined as

The three-dimensional velocity vector is defined as with its magnitude also representing speed and being determined by

While some textbooks use subscript notation to define Cartesian components of velocity, others use , , and for the -, -, and -axes respectively. [16]

Polar coordinates

Representation of radial and tangential components of velocity at different moments of linear motion with constant velocity of the object around an observer O (it corresponds, for example, to the passage of a car on a straight street around a pedestrian standing on the sidewalk). The radial component can be observed due to the Doppler effect, the tangential component causes visible changes of the position of the object. Radial and tangential.svg
Representation of radial and tangential components of velocity at different moments of linear motion with constant velocity of the object around an observer O (it corresponds, for example, to the passage of a car on a straight street around a pedestrian standing on the sidewalk). The radial component can be observed due to the Doppler effect, the tangential component causes visible changes of the position of the object.

In polar coordinates, a two-dimensional velocity is described by a radial velocity , defined as the component of velocity away from or toward the origin, and a transverse velocity, perpendicular to the radial one. [17] [18] Both arise from angular velocity, which is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system).

The radial and traverse velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components. The transverse velocity is the component of velocity along a circle centered at the origin. where

The radial speed (or magnitude of the radial velocity) is the dot product of the velocity vector and the unit vector in the radial direction. where is position and is the radial direction.

The transverse speed (or magnitude of the transverse velocity) is the magnitude of the cross product of the unit vector in the radial direction and the velocity vector. It is also the dot product of velocity and transverse direction, or the product of the angular speed and the radius (the magnitude of the position). such that

Angular momentum in scalar form is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed. The sign convention for angular momentum is the same as that for angular velocity. where

The expression is known as moment of inertia. If forces are in the radial direction only with an inverse square dependence, as in the case of a gravitational orbit, angular momentum is constant, and transverse speed is inversely proportional to the distance, angular speed is inversely proportional to the distance squared, and the rate at which area is swept out is constant. These relations are known as Kepler's laws of planetary motion.

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

Angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Direction and rate of rotation

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Rigid body dynamics</span> Study of the effects of forces on undeformable bodies

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

<span class="mw-page-title-main">Liénard–Wiechert potential</span> Electromagnetic effect of point charges

The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations, these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in arbitrary motion, but are not corrected for quantum mechanical effects. Electromagnetic radiation in the form of waves can be obtained from these potentials. These expressions were developed in part by Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in 1900.

Linear motion, also called rectilinear motion, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity ; and non-uniform linear motion, with variable velocity. The motion of a particle along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

References

  1. "The Feynman Lectures on Physics Vol. I Ch. 8: Motion". www.feynmanlectures.caltech.edu. Retrieved 2024-01-05.
  2. David Halliday; Robert Resnick; Jearl Walker (2021). Fundamentals of Physics, Extended (12th ed.). John Wiley & Sons. p. 71. ISBN   978-1-119-77351-1. Extract of page 71
  3. Richard P. Olenick; Tom M. Apostol; David L. Goodstein (2008). The Mechanical Universe: Introduction to Mechanics and Heat (illustrated, reprinted ed.). Cambridge University Press. p. 84. ISBN   978-0-521-71592-8. Extract of page 84
  4. Michael J. Cardamone (2007). Fundamental Concepts of Physics. Universal-Publishers. p. 5. ISBN   978-1-59942-433-0. Extract of page 5
  5. Jerry D. Wilson; Anthony J. Buffa; Bo Lou (2022). College Physics Essentials, Eighth Edition (Two-Volume Set) (illustrated ed.). CRC Press. p. 40. ISBN   978-1-351-12991-6. Extract of page 40
  6. David Halliday; Robert Resnick; Jearl Walker (2021). Fundamentals of Physics, Extended (12th ed.). John Wiley & Sons. p. 70. ISBN   978-1-119-77351-1. Extract of page 70
  7. Adrian Banner (2007). The Calculus Lifesaver: All the Tools You Need to Excel at Calculus (illustrated ed.). Princeton University Press. p. 350. ISBN   978-0-691-13088-0. Extract of page 350
  8. 1 2 Giri & Bannerjee (2002). Statistical Tools and Technique. Academic Publishers. p. 4. ISBN   978-81-87504-39-9. Extract of page 4
  9. Bekir Karaoglu (2020). Classical Physics: A Two-Semester Coursebook. Springer Nature. p. 41. ISBN   978-3-030-38456-2. Extract of page 41
  10. David Halliday; Robert Resnick; Jearl Walker (2010). Fundamentals of Physics, Chapters 33-37. John Wiley & Sons. p. 1080. ISBN   978-0-470-54794-6. Extract of page 1080
  11. For Earth's atmosphere, the air density can be found using the barometric formula. It is 1.293 kg/m3 at 0 °C and 1 atmosphere.
  12. Jim Breithaupt (2000). New Understanding Physics for Advanced Level (illustrated ed.). Nelson Thornes. p. 231. ISBN   978-0-7487-4314-8. Extract of page 231
  13. Eckehard W Mielke (2022). Modern Aspects Of Relativity. World Scientific. p. 98. ISBN   978-981-12-4406-3. Extract of page 98
  14. Basic principle
  15. "The Feynman Lectures on Physics Vol. I Ch. 9: Newton's Laws of Dynamics". www.feynmanlectures.caltech.edu. Retrieved 2024-01-04.
  16. White, F. M. (2008). Fluid mechanics. The McGraw Hill Companies,.
  17. E. Graham; Aidan Burrows; Brian Gaulter (2002). Mechanics, Volume 6 (illustrated ed.). Heinemann. p. 77. ISBN   978-0-435-51311-5. Extract of page 77
  18. Anup Goel; H. J. Sawant (2021). Engineering Mechanics. Technical Publications. p. 8. ISBN   978-93-332-2190-0. Extract of page 8