This article needs additional citations for verification .(March 2011) |

Velocity | |
---|---|

Common symbols | v, v, v→ |

Other units | mph, ft/s |

In SI base units | m/s |

Dimension | LT^{−1} |

Part of a series on |

Classical mechanics |
---|

**Velocity** is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. 60 km/h northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

- Constant velocity vs acceleration
- Difference between speed and velocity
- Equation of motion
- Average velocity
- Instantaneous velocity
- Relationship to acceleration
- Quantities that are dependent on velocity
- Relative velocity
- Scalar velocities
- Polar coordinates
- See also
- Notes
- References
- External links

Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called *speed*, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s^{−1}). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an * acceleration *.

To have a *constant velocity*, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration.

Speed, the scalar magnitude of a velocity vector, denotes only how fast an object is moving.^{ [1] }^{ [2] }

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the *instantaneous velocity* to emphasize the distinction from the average velocity. In some applications the **average velocity** of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, * v*(

The average velocity is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction.

In terms of a displacement-time (*x* vs. *t*) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with *t* coordinates equal to the boundaries of the time period for the average velocity.

The average velocity is the same as the velocity averaged over time – that is to say, its time-weighted average, which may be calculated as the time integral of the velocity:

where we may identify

and

If we consider * v* as velocity and

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (* v* vs.

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Although velocity is defined as the rate of change of position, it is often common to start with an expression for an object's acceleration. As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a * v*(

From there, we can obtain an expression for velocity as the area under an * a*(

In the special case of constant acceleration, velocity can be studied using the suvat equations. By considering **a** as being equal to some arbitrary constant vector, it is trivial to show that

with * v* as the velocity at time

It is also possible to derive an expression for the velocity independent of time, known as the Torricelli equation, as follows:

where *v* = |* v*| etc.

The above equations are valid for both Newtonian mechanics and special relativity. Where Newtonian mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in Newtonian mechanics, all observers agree on the value of t and the transformation rules for position create a situation in which all non-accelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity. In other words, only relative velocity can be calculated.

The kinetic energy of a moving object is dependent on its velocity and is given by the equation

ignoring special relativity, where *E*_{k} is the kinetic energy and *m* is the mass. Kinetic energy is a scalar quantity as it depends on the square of the velocity, however a related quantity, momentum, is a vector and defined by

In special relativity, the dimensionless Lorentz factor appears frequently, and is given by

where γ is the Lorentz factor and *c* is the speed of light.

Escape velocity is the minimum speed a ballistic object needs to escape from a massive body such as Earth. It represents the kinetic energy that, when added to the object's gravitational potential energy (which is always negative), is equal to zero. The general formula for the escape velocity of an object at a distance *r* from the center of a planet with mass *M* is

where *G* is the gravitational constant and *g* is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of the base body as long as it doesn't intersect with something in its path.

**Relative velocity** is a measurement of velocity between two objects as determined in a single coordinate system. Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. In Newtonian mechanics, the relative velocity is independent of the chosen inertial reference frame. This is not the case anymore with special relativity in which velocities depend on the choice of reference frame.

If an object A is moving with velocity vector * v* and an object B with velocity vector

Similarly, the relative velocity of object B moving with velocity * w*, relative to object A moving with velocity

Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest.

In the one-dimensional case,^{ [3] } the velocities are scalars and the equation is either:

- , if the two objects are moving in opposite directions, or:
- , if the two objects are moving in the same direction.

In polar coordinates, a two-dimensional velocity is described by a radial velocity, defined as the component of velocity away from or toward the origin (also known as *velocity made good*), and an angular velocity, which is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system).

The radial and angular velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components. The transverse velocity is the component of velocity along a circle centered at the origin.

where

- is the transverse velocity
- is the radial velocity.

The *magnitude of the radial velocity* is the dot product of the velocity vector and the unit vector in the direction of the displacement.

where is displacement.

The *magnitude of the transverse velocity* is that of the cross product of the unit vector in the direction of the displacement and the velocity vector. It is also the product of the angular speed and the magnitude of the displacement.

such that

Angular momentum in scalar form is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed. The sign convention for angular momentum is the same as that for angular velocity.

where

- is mass

The expression is known as moment of inertia. If forces are in the radial direction only with an inverse square dependence, as in the case of a gravitational orbit, angular momentum is constant, and transverse speed is inversely proportional to the distance, angular speed is inversely proportional to the distance squared, and the rate at which area is swept out is constant. These relations are known as Kepler's laws of planetary motion.

- Four-velocity (relativistic version of velocity for Minkowski spacetime)
- Group velocity
- Hypervelocity
- Phase velocity
- Proper velocity (in relativity, using traveler time instead of observer time)
- Rapidity (a version of velocity additive at relativistic speeds)
- Terminal velocity
- Velocity vs. time graph

- ↑ Rowland, Todd (2019). "Velocity Vector". Wolfram MathWorld. Retrieved 2 June 2019.
- ↑ Wilson, Edwin Bidwell (1901).
*Vector analysis: a text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs*. Yale bicentennial publications. C. Scribner's Sons. p. 125. hdl:2027/mdp.39015000962285. Earliest occurrence of the speed/velocity terminology. - ↑ Basic principle

In mechanics, **acceleration** is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the *net* force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

In physics, **angular momentum** is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

In physics, the **Lorentz transformations** are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

In physics and mechanics, **torque** is the rotational equivalent of linear force. It is also referred to as the **moment**, **moment of force**, **rotational force** or **turning effect**, depending on the field of study. It represents the capability of a force to produce change in the rotational motion of the body. The concept originated with the studies by Archimedes of the usage of levers, which is reflected in his famous quote: "*Give me a lever and a place to stand and I will move the Earth*". Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object around a specific axis. Torque is defined as the product of the magnitude of the force and the perpendicular distance of the line of action of a force from the axis of rotation. The symbol for torque is typically , the lowercase Greek letter *tau*. When being referred to as moment of force, it is commonly denoted by M.

In physics, **equations of motion** are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

**Kinematics** is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

In physics, **angular velocity** or **rotational velocity**, also known as **angular frequency vector**, is a pseudovector representation of how fast the angular position or orientation of an object changes with time. The magnitude of the pseudovector represents the *angular speed*, the rate at which the object rotates or revolves, and its direction is normal to the instantaneous plane of rotation or angular displacement. The orientation of angular velocity is conventionally specified by the right-hand rule.

In physics, **work** is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, it equals the product of the force strength and the distance traveled. A force is said to do *positive work* if when applied it has a component in the direction of the displacement of the point of application. A force does *negative work* if it has a component opposite to the direction of the displacement at the point of application of the force.

The **moment of inertia**, otherwise known as the **mass moment of inertia**, **angular mass**, **second moment of mass**, or most accurately, **rotational inertia**, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation.

In the physical science of dynamics, **rigid-body dynamics** studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are *rigid* simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

In physics, **circular motion** is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.

In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the **particle acceleration** or sound acceleration with the symbol a in metre/second^{2}. In acoustics or physics, **acceleration** is defined as the rate of change of velocity. It is thus a vector quantity with dimension length/time^{2}. In SI units, this is m/s^{2}.

In physics, the **Thomas precession**, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

In physics, **relativistic mechanics** refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light *c*. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at *any* speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

**Rotation around a fixed axis** is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will appear.

**Linear motion**, also called **rectilinear motion**, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: **uniform linear motion**, with constant velocity ; and **non-uniform linear motion**, with variable velocity. The motion of a particle along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track.

**Classical mechanics** is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility).

In classical mechanics, the **central-force problem** is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

- Robert Resnick and Jearl Walker,
*Fundamentals of Physics*, Wiley; 7 Sub edition (June 16, 2004). ISBN 0-471-23231-9.

Wikimedia Commons has media related to Velocity .

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.