Lorentz factor

Last updated
Definition of the Lorentz factor g RelativeFactor.png
Definition of the Lorentz factor γ

The Lorentz factor or Lorentz term (also known as the gamma factor [1] ) is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz. [2]

Contents

It is generally denoted γ (the Greek lowercase letter gamma). Sometimes (especially in discussion of superluminal motion) the factor is written as Γ (Greek uppercase-gamma) rather than γ.

Definition

The Lorentz factor γ is defined as [3] where:

This is the most frequently used form in practice, though not the only one (see below for alternative forms).

To complement the definition, some authors define the reciprocal [4] see velocity addition formula.

Occurrence

Following is a list of formulae from Special relativity which use γ as a shorthand: [3] [5]

Corollaries of the above transformations are the results:

Applying conservation of momentum and energy leads to these results:

Numerical values

Lorentz factor g as a function of fraction of given velocity and speed of light. Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v - c) g increases without bound (g - [?]). Lorentz factor 2.png
Lorentz factor γ as a function of fraction of given velocity and speed of light. Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (vc)γ increases without bound (γ → ∞).
a (Lorentz factor inverse) as a function of velocity--a circular arc Lorentz factor inverse.svg
α (Lorentz factor inverse) as a function of velocity—a circular arc

In the table below, the left-hand column shows speeds as different fractions of the speed of light (i.e. in units of c). The middle column shows the corresponding Lorentz factor, the final is the reciprocal. Values in bold are exact.

Speed (units of c),
β = v/c
Lorentz factor,
γ
Reciprocal,
1/γ
011
0.0501.0010.999
0.1001.0050.995
0.1501.0110.989
0.2001.0210.980
0.2501.0330.968
0.3001.0480.954
0.4001.0910.917
0.5001.1550.866
0.6001.250.8
0.7001.4000.714
0.7501.5120.661
0.8001.6670.6
0.86620.5
0.9002.2940.436
0.9907.0890.141
0.99922.3660.045
0.99995100.000.010

Alternative representations

There are other ways to write the factor. Above, velocity v was used, but related variables such as momentum and rapidity may also be convenient.

Momentum

Solving the previous relativistic momentum equation for γ leads to This form is rarely used, although it does appear in the Maxwell–Jüttner distribution. [6]

Rapidity

Applying the definition of rapidity as the hyperbolic angle : [7] also leads to γ (by use of hyperbolic identities):

Using the property of Lorentz transformation, it can be shown that rapidity is additive, a useful property that velocity does not have. Thus the rapidity parameter forms a one-parameter group, a foundation for physical models.

Bessel function

The Bunney identity represents the Lorentz factor in terms of an infinite series of Bessel functions: [8]

Series expansion (velocity)

The Lorentz factor has the Maclaurin series: which is a special case of a binomial series.

The approximation may be used to calculate relativistic effects at low speeds. It holds to within 1% error for v < 0.4 c (v < 120,000 km/s), and to within 0.1% error for v < 0.22 c (v < 66,000 km/s).

The truncated versions of this series also allow physicists to prove that special relativity reduces to Newtonian mechanics at low speeds. For example, in special relativity, the following two equations hold:

For and , respectively, these reduce to their Newtonian equivalents:

The Lorentz factor equation can also be inverted to yield This has an asymptotic form

The first two terms are occasionally used to quickly calculate velocities from large γ values. The approximation holds to within 1% tolerance for γ > 2, and to within 0.1% tolerance for γ > 3.5.

Applications in astronomy

The standard model of long-duration gamma-ray bursts (GRBs) holds that these explosions are ultra-relativistic (initial γ greater than approximately 100), which is invoked to explain the so-called "compactness" problem: absent this ultra-relativistic expansion, the ejecta would be optically thick to pair production at typical peak spectral energies of a few 100 keV, whereas the prompt emission is observed to be non-thermal. [9]

Muons, a subatomic particle, travel at a speed such that they have a relatively high Lorentz factor and therefore experience extreme time dilation. Since muons have a mean lifetime of just 2.2  μs, muons generated from cosmic-ray collisions 10 km (6.2 mi) high in Earth's atmosphere should be nondetectable on the ground due to their decay rate. However, roughly 10% of muons from these collisions are still detectable on the surface, thereby demonstrating the effects of time dilation on their decay rate. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

Relativistic rocket means any spacecraft that travels close enough to light speed for relativistic effects to become significant. The meaning of "significant" is a matter of context, but often a threshold velocity of 30% to 50% of the speed of light is used. At 30% c, the difference between relativistic mass and rest mass is only about 5%, while at 50% it is 15%, ; so above such speeds special relativity is needed to accurately describe motion, while below this range Newtonian physics and the Tsiolkovsky rocket equation usually give sufficient accuracy.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Velocity-addition formula</span> Equation used in relativistic physics

In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .

<span class="mw-page-title-main">Proper velocity</span> Ratio in relativity

In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Wigner rotation</span>

In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

In physics, the Maxwell–Jüttner distribution, sometimes called Jüttner–Synge distribution, is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

  1. "The Gamma Factor". webs.morningside.edu. Retrieved 2024-01-14.
  2. Tyson, Neil deGrasse; Liu, Charles Tsun-Chu; Irion, Robert. "The Special Theory of Relativity". One Universe. National Academies of Sciences, Engineering, and Medicine. Archived from the original on 2021-07-25. Retrieved 2024-01-06.
  3. 1 2 Forshaw, Jeffrey; Smith, Gavin (2014). Dynamics and Relativity. John Wiley & Sons. ISBN   978-1-118-93329-9.
  4. Yaakov Friedman, Physical Applications of Homogeneous Balls, Progress in Mathematical Physics 40 Birkhäuser, Boston, 2004, pages 1-21.
  5. Young; Freedman (2008). Sears' and Zemansky's University Physics (12th ed.). Pearson Ed. & Addison-Wesley. ISBN   978-0-321-50130-1.
  6. Synge, J.L (1957). The Relativistic Gas. Series in physics. North-Holland. LCCN 57-003567
  7. Kinematics Archived 2014-11-21 at the Wayback Machine , by J.D. Jackson, See page 7 for definition of rapidity.
  8. Cameron R D Bunney and Jorma Louko 2023 Class. Quantum Grav. 40 155001
  9. Cenko, S. B.; et al. (2015). "iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger". Astrophysical Journal Letters. 803 (L24): 803. arXiv: 1504.00673 . Bibcode:2015ApJ...803L..24C. doi:10.1088/2041-8205/803/2/L24.
  10. "Muon Experiment in Relativity". HyperPhysics.Phy-Astr.GSU.edu. Retrieved 2024-01-06.