Gravitational acceleration

Last updated

In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; [1] the measurement and analysis of these rates is known as gravimetry.

Contents

At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s2 (32.03 to 32.26 ft/s2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity anomalies. This does not take into account other effects, such as buoyancy or drag.

Relation to the Universal Law

Newton's law of universal gravitation states that there is a gravitational force between any two masses that is equal in magnitude for each mass, and is aligned to draw the two masses toward each other. The formula is:

where and are any two masses, is the gravitational constant, and is the distance between the two point-like masses.

Two bodies orbiting their center of mass (red cross) Orbit3.gif
Two bodies orbiting their center of mass (red cross)

Using the integral form of Gauss's Law, this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any man-scale artifact. The distances between planets and between the planets and the Sun are (by many orders of magnitude) larger than the sizes of the sun and the planets. In consequence both the sun and the planets can be considered as point masses and the same formula applied to planetary motions. (As planets and natural satellites form pairs of comparable mass, the distance 'r' is measured from the common centers of mass of each pair rather than the direct total distance between planet centers.)

If one mass is much larger than the other, it is convenient to take it as observational reference and define it as source of a gravitational field of magnitude and orientation given by: [5]

where is the mass of the field source (larger), and is a unit vector directed from the field source to the sample (smaller) mass. The negative sign indicates that the force is attractive (points backward, toward the source).

Then the attraction force vector onto a sample mass can be expressed as:

Here is the frictionless, free-fall acceleration sustained by the sampling mass under the attraction of the gravitational source. It is a vector oriented toward the field source, of magnitude measured in acceleration units. The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass.

This model represents the "far-field" gravitational acceleration associated with a massive body. When the dimensions of a body are not trivial compared to the distances of interest, the principle of superposition can be used for differential masses for an assumed density distribution throughout the body in order to get a more detailed model of the "near-field" gravitational acceleration. For satellites in orbit, the far-field model is sufficient for rough calculations of altitude versus period, but not for precision estimation of future location after multiple orbits.

The more detailed models include (among other things) the bulging at the equator for the Earth, and irregular mass concentrations (due to meteor impacts) for the Moon. The Gravity Recovery and Climate Experiment (GRACE) mission launched in 2002 consists of two probes, nicknamed "Tom" and "Jerry", in polar orbit around the Earth measuring differences in the distance between the two probes in order to more precisely determine the gravitational field around the Earth, and to track changes that occur over time. Similarly, the Gravity Recovery and Interior Laboratory mission from 2011 to 2012 consisted of two probes ("Ebb" and "Flow") in polar orbit around the Moon to more precisely determine the gravitational field for future navigational purposes, and to infer information about the Moon's physical makeup.

Comparative gravities of the Earth, Sun, Moon, and planets

The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the Sun's photosphere. The values in the table have not been de-rated for the centrifugal force effect of planet rotation (and cloud-top wind speeds for the giant planets) and therefore, generally speaking, are similar to the actual gravity that would be experienced near the poles. For reference, the time it would take an object to fall 100 metres (330 ft), the height of a skyscraper, is shown, along with the maximum speed reached. Air resistance is neglected.

BodyMultiple of
Earth gravity
m/s2ft/s2NotesTime to fall 100 m and
maximum speed reached
Sun 27.90274.18990.85 s843 km/h (524 mph)
Mercury 0.37703.70312.157.4 s98 km/h (61 mph)
Venus 0.90328.87229.114.8 s152 km/h (94 mph)
Earth 19.806732.174 [a] 4.5 s159 km/h (99 mph)
Moon 0.16551.6255.3311.1 s65 km/h (40 mph)
Mars 0.38953.72812.237.3 s98 km/h (61 mph)
Ceres 0.0290.280.9226.7 s27 km/h (17 mph)
Jupiter 2.64025.9385.12.8 s259 km/h (161 mph)
Io 0.1821.7895.8710.6 s68 km/h (42 mph)
Europa 0.1341.3144.3112.3 s58 km/h (36 mph)
Ganymede 0.1451.4264.6811.8 s61 km/h (38 mph)
Callisto 0.1261.244.112.7 s57 km/h (35 mph)
Saturn 1.13911.1936.74.2 s170 km/h (110 mph)
Titan 0.1381.34554.41412.2 s59 km/h (37 mph)
Uranus 0.9179.0129.64.7 s153 km/h (95 mph)
Titania 0.0390.3791.2423.0 s31 km/h (19 mph)
Oberon 0.0350.3471.1424.0 s30 km/h (19 mph)
Neptune 1.14811.2837.04.2 s171 km/h (106 mph)
Triton 0.0790.7792.5616.0 s45 km/h (28 mph)
Pluto 0.06210.6102.0018.1 s40 km/h (25 mph)
Eris 0.08140.82.6(approx.)15.8 s46 km/h (29 mph)

General relativity

In Einstein's theory of general relativity, gravitation is an attribute of curved spacetime instead of being due to a force propagated between bodies. In Einstein's theory, masses distort spacetime in their vicinity, and other particles move in trajectories determined by the geometry of spacetime. The gravitational force is a fictitious force. There is no gravitational acceleration, in that the proper acceleration and hence four-acceleration of objects in free fall are zero. Rather than undergoing an acceleration, objects in free fall travel along straight lines (geodesics) on the curved spacetime.

Gravitational field

Representation of the gravitational field of Earth and Moon combined (not to scale). Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium. Earth-moon-field.svg
Representation of the gravitational field of Earth and Moon combined (not to scale). Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium.

In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [6] A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s2).

In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid,[ citation needed ] and since the 19th century, explanations for gravity in classical mechanics have usually been taught in terms of a field model, rather than a point attraction. It results from the spatial gradient of the gravitational potential field.

In general relativity, rather than two particles attracting each other, the particles distort spacetime via their mass, and this distortion is what is perceived and measured as a "force".[ citation needed ] In such a model one states that matter moves in certain ways in response to the curvature of spacetime, [7] and that there is either no gravitational force, [8] or that gravity is a fictitious force. [9]

Gravity is distinguished from other forces by its obedience to the equivalence principle.

See also

Notes

  1. This value excludes the adjustment for centrifugal force due to Earth's rotation and is therefore greater than the 9.80665 m/s2 value of standard gravity.

Related Research Articles

<span class="mw-page-title-main">Force</span> Influence that can change motion of an object

A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.

In classical physics and special relativity, an inertial frame of reference is a stationary or uniformly moving frame of reference. Observed relative to such a frame, objects exhibit inertia, i.e., remain at rest until acted upon by external forces, and the laws of nature can be observed without the need for acceleration correction.

<span class="mw-page-title-main">Mass</span> Amount of matter present in an object

Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

<span class="mw-page-title-main">Tidal force</span> A gravitational effect also known as the differential force and the perturbing force

The tidal force or tide-generating force is a gravitational effect that stretches a body along the line towards and away from the center of mass of another body due to spatial variations in strength in gravitational field from the other body. It is responsible for the tides and related phenomena, including solid-earth tides, tidal locking, breaking apart of celestial bodies and formation of ring systems within the Roche limit, and in extreme cases, spaghettification of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearer side is attracted more strongly than the farther side. The difference is positive in the near side and negative in the far side, which causes a body to get stretched. Thus, the tidal force is also known as the differential force, residual force, or secondary effect of the gravitational field.

<span class="mw-page-title-main">Weight</span> Force on a mass due to gravity

In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction primarily observed as mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

<span class="mw-page-title-main">Gravitational field</span> Model in physics

In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s2).

Geopotential is the potential of the Earth's gravity field. For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation. In addition to the actual potential, a theoretical normal potential and their difference, the disturbing potential, can also be defined.

Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work per unit mass that would be needed to move an object to that point from a fixed reference point in the conservative gravitational field. It is analogous to the electric potential with mass playing the role of charge. The reference point, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance. Their similarity is correlated with both associated fields having conservative forces.

<span class="mw-page-title-main">Curved spacetime</span> Mathematical theory of the geometry of space and time

In physics, curved spacetime is the mathematical model in which, with Einstein's theory of general relativity, gravity naturally arises, as opposed to being described as a fundamental force in Newton's static Euclidean reference frame. Objects move along geodesics—curved paths determined by the local geometry of spacetime—rather than being influenced directly by distant bodies. This framework led to two fundamental principles: coordinate independence, which asserts that the laws of physics are the same regardless of the coordinate system used, and the equivalence principle, which states that the effects of gravity are indistinguishable from those of acceleration in sufficiently small regions of space. These principles laid the groundwork for a deeper understanding of gravity through the geometry of spacetime, as formalized in Einstein's field equations.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere.

In physical theories, a test particle, or test charge, is an idealized model of an object whose physical properties are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter the behaviour of the rest of the system. The concept of a test particle often simplifies problems, and can provide a good approximation for physical phenomena. In addition to its uses in the simplification of the dynamics of a system in particular limits, it is also used as a diagnostic in computer simulations of physical processes.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

The mathematics of general relativity is complicated. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

References

  1. Gerald James Holton and Stephen G. Brush (2001). Physics, the human adventure: from Copernicus to Einstein and beyond (3rd ed.). Rutgers University Press. p. 113. ISBN   978-0-8135-2908-0.
  2. Boynton, Richard (2001). "Precise Measurement of Mass" (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Archived from the original (PDF) on 2007-02-27. Retrieved 2007-01-21.
  3. Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN   978-3-211-33544-4. § 2.1: "The total force acting on a body at rest on the earth’s surface is the resultant of gravitational force and the centrifugal force of the earth’s rotation and is called gravity."{{cite book}}: CS1 maint: postscript (link)
  4. Hirt, C.; Claessens, S.; Fecher, T.; Kuhn, M.; Pail, R.; Rexer, M. (2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters . 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi: 10.1002/grl.50838 . hdl: 20.500.11937/46786 .
  5. Fredrick J. Bueche (1975). Introduction to Physics for Scientists and Engineers, 2nd Ed. USA: Von Hoffmann Press. ISBN   978-0-07-008836-8.
  6. Feynman, Richard (1970). The Feynman Lectures on Physics. Vol. I. Addison Wesley Longman. ISBN   978-0-201-02115-8.
  7. Geroch, Robert (1981). General Relativity from A to B. University of Chicago Press. p. 181. ISBN   978-0-226-28864-2.
  8. Grøn, Øyvind; Hervik, Sigbjørn (2007). Einstein's General Theory of Relativity: with Modern Applications in Cosmology. Springer Japan. p. 256. ISBN   978-0-387-69199-2.
  9. Foster, J.; Nightingale, J. D. (2006). A Short Course in General Relativity (3 ed.). Springer Science & Business. p. 55. ISBN   978-0-387-26078-5.