Unit vector

Last updated

In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in (pronounced "v-hat").

Contents

The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,

where ‖u‖ is the norm (or length) of u and . [1] [2] The term normalized vector is sometimes used as a synonym for unit vector.

A unit vector is often used to represent directions, such as normal directions. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination form of unit vectors.

Orthogonal coordinates

Cartesian coordinates

Unit vectors may be used to represent the axes of a Cartesian coordinate system. For instance, the standard unit vectors in the direction of the x, y, and z axes of a three dimensional Cartesian coordinate system are

They form a set of mutually orthogonal unit vectors, typically referred to as a standard basis in linear algebra.

They are often denoted using common vector notation (e.g., x or ) rather than standard unit vector notation (e.g., ). In most contexts it can be assumed that x, y, and z, (or and ) are versors of a 3-D Cartesian coordinate system. The notations (î, ĵ, ), (1, 2, 3), (êx, êy, êz), or (ê1, ê2, ê3), with or without hat, are also used, [1] particularly in contexts where i, j, k might lead to confusion with another quantity (for instance with index symbols such as i, j, k, which are used to identify an element of a set or array or sequence of variables).

When a unit vector in space is expressed in Cartesian notation as a linear combination of x, y, z, its three scalar components can be referred to as direction cosines. The value of each component is equal to the cosine of the angle formed by the unit vector with the respective basis vector. This is one of the methods used to describe the orientation (angular position) of a straight line, segment of straight line, oriented axis, or segment of oriented axis (vector).

Cylindrical coordinates

The three orthogonal unit vectors appropriate to cylindrical symmetry are:

They are related to the Cartesian basis , , by:

The vectors and are functions of and are not constant in direction. When differentiating or integrating in cylindrical coordinates, these unit vectors themselves must also be operated on. The derivatives with respect to are:

Spherical coordinates

The unit vectors appropriate to spherical symmetry are: , the direction in which the radial distance from the origin increases; , the direction in which the angle in the x-y plane counterclockwise from the positive x-axis is increasing; and , the direction in which the angle from the positive z axis is increasing. To minimize redundancy of representations, the polar angle is usually taken to lie between zero and 180 degrees. It is especially important to note the context of any ordered triplet written in spherical coordinates, as the roles of and are often reversed. Here, the American "physics" convention [3] is used. This leaves the azimuthal angle defined the same as in cylindrical coordinates. The Cartesian relations are:

The spherical unit vectors depend on both and , and hence there are 5 possible non-zero derivatives. For a more complete description, see Jacobian matrix and determinant. The non-zero derivatives are:

General unit vectors

Common themes of unit vectors occur throughout physics and geometry: [4]

Unit vectorNomenclatureDiagram
Tangent vector to a curve/flux line Tangent normal binormal unit vectors.svg Polar coord unit vectors and normal.svg

A normal vector to the plane containing and defined by the radial position vector and angular tangential direction of rotation is necessary so that the vector equations of angular motion hold.

Normal to a surface tangent plane/plane containing radial position component and angular tangential component

In terms of polar coordinates;

Binormal vector to tangent and normal [5]
Parallel to some axis/line Perpendicular and parallel unit vectors.svg

One unit vector aligned parallel to a principal direction (red line), and a perpendicular unit vector is in any radial direction relative to the principal line.

Perpendicular to some axis/line in some radial direction
Possible angular deviation relative to some axis/line Angular unit vector.svg

Unit vector at acute deviation angle φ (including 0 or π/2 rad) relative to a principal direction.

Curvilinear coordinates

In general, a coordinate system may be uniquely specified using a number of linearly independent unit vectors [1] (the actual number being equal to the degrees of freedom of the space). For ordinary 3-space, these vectors may be denoted . It is nearly always convenient to define the system to be orthonormal and right-handed:

where is the Kronecker delta (which is 1 for i = j, and 0 otherwise) and is the Levi-Civita symbol (which is 1 for permutations ordered as ijk, and −1 for permutations ordered as kji).

Right versor

A unit vector in was called a right versor by W. R. Hamilton, as he developed his quaternions . In fact, he was the originator of the term vector, as every quaternion has a scalar part s and a vector part v. If v is a unit vector in , then the square of v in quaternions is –1. Thus by Euler's formula, is a versor in the 3-sphere. When θ is a right angle, the versor is a right versor: its scalar part is zero and its vector part v is a unit vector in .

Thus the right versors extend the notion of imaginary units found in the complex plane, where the right versors now range over the 2-sphere rather than the pair {i, –i} in the complex plane.

By extension, a right quaternion is a real multiple of a right versor.

See also

Notes

  1. 1 2 3 Weisstein, Eric W. "Unit Vector". Wolfram MathWorld. Retrieved 2020-08-19.
  2. "Unit Vectors". Brilliant Math & Science Wiki. Retrieved 2020-08-19.
  3. Tevian Dray and Corinne A. Manogue, Spherical Coordinates, College Math Journal 34, 168-169 (2003).
  4. F. Ayres; E. Mendelson (2009). Calculus (Schaum's Outlines Series) (5th ed.). Mc Graw Hill. ISBN   978-0-07-150861-2.
  5. M. R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines Series) (2nd ed.). Mc Graw Hill. ISBN   978-0-07-161545-7.

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Angular velocity</span> Direction and rate of rotation

In physics, angular velocity, also known as the angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature. They are named after Carl Gustav Jacob Jacobi.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

<span class="mw-page-title-main">Vector fields in cylindrical and spherical coordinates</span> Vector field representation in 3D curvilinear coordinate systems

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

<span class="mw-page-title-main">Vector notation</span> Use of coordinates for representing vectors

In mathematics and physics, vector notation is a commonly used notation for representing vectors, which may be Euclidean vectors, or more generally, members of a vector space.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

References