Unit sphere

Last updated
Some 1-spheres: ||x||2 is the norm for Euclidean space. Vector norms.svg
Some 1-spheres: x2 is the norm for Euclidean space.

In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit -sphere is an -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the plane. An (open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center.

Contents

A sphere or ball with unit radius and center at the origin of the space is called the unit sphere or the unit ball. Any arbitrary sphere can be transformed to the unit sphere by a combination of translation and scaling, so the study of spheres in general can often be reduced to the study of the unit sphere.

The unit sphere is often used as a model for spherical geometry because it has constant sectional curvature of 1, which simplifies calculations. In trigonometry, circular arc length on the unit circle is called radians and used for measuring angular distance; in spherical trigonometry surface area on the unit sphere is called steradians and used for measuring solid angle.

In more general contexts, a unit sphere is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance", and an (open) unit ball is the region inside.

Unit spheres and balls in Euclidean space

In Euclidean space of dimensions, the -dimensional unit sphere is the set of all points which satisfy the equation

The open unit -ball is the set of all points satisfying the inequality

and closed unit -ball is the set of all points satisfying the inequality

Volume and area

Graphs of volumes (V) and surface areas (S) of unit n-balls Graphs of volumes (V) and surface areas (S) of n-balls of radius 1.png
Graphs of volumes (V) and surface areas (S) of unit n-balls

The classical equation of a unit sphere is that of the ellipsoid with a radius of 1 and no alterations to the -, -, or - axes:

The volume of the unit ball in Euclidean -space, and the surface area of the unit sphere, appear in many important formulas of analysis. The volume of the unit -ball, which we denote can be expressed by making use of the gamma function. It is

where is the double factorial.

The hypervolume of the -dimensional unit sphere (i.e., the "area" of the boundary of the -dimensional unit ball), which we denote can be expressed as

For example, is the "area" of the boundary of the unit ball , which simply counts the two points. Then is the "area" of the boundary of the unit disc, which is the circumference of the unit circle. is the area of the boundary of the unit ball , which is the surface area of the unit sphere .

The surface areas and the volumes for some values of are as follows:

(surface area) (volume)
01
122
26.2833.141
312.574.189
419.744.935
526.325.264
631.015.168
733.074.725
832.474.059
929.693.299
1025.502.550

where the decimal expanded values for are rounded to the displayed precision.

Recursion

The values satisfy the recursion:

for .

The values satisfy the recursion:

for .

Non-negative real-valued dimensions

The value at non-negative real values of is sometimes used for normalization of Hausdorff measure. [1] [2]

Other radii

The surface area of an -sphere with radius is and the volume of an - ball with radius is For instance, the area is for the two-dimensional surface of the three-dimensional ball of radius The volume is for the three-dimensional ball of radius .

Unit balls in normed vector spaces

The open unit ball of a normed vector space with the norm is given by

It is the topological interior of the closed unit ball of

The latter is the disjoint union of the former and their common border, the unit sphere of

The "shape" of the unit ball is entirely dependent on the chosen norm; it may well have "corners", and for example may look like in the case of the max-norm in . One obtains a naturally round ball as the unit ball pertaining to the usual Hilbert space norm, based in the finite-dimensional case on the Euclidean distance; its boundary is what is usually meant by the unit sphere.

Let Define the usual -norm for as:

Then is the usual Hilbert space norm. is called the Hamming norm, or -norm. The condition is necessary in the definition of the norm, as the unit ball in any normed space must be convex as a consequence of the triangle inequality. Let denote the max-norm or -norm of .

Note that for the one-dimensional circumferences of the two-dimensional unit balls, we have:

is the minimum value.
is the maximum value.

Generalizations

Metric spaces

All three of the above definitions can be straightforwardly generalized to a metric space, with respect to a chosen origin. However, topological considerations (interior, closure, border) need not apply in the same way (e.g., in ultrametric spaces, all of the three are simultaneously open and closed sets), and the unit sphere may even be empty in some metric spaces.

Quadratic forms

If is a linear space with a real quadratic form then may be called the unit sphere [3] [4] or unit quasi-sphere of For example, the quadratic form , when set equal to one, produces the unit hyperbola, which plays the role of the "unit circle" in the plane of split-complex numbers. Similarly, the quadratic form yields a pair of lines for the unit sphere in the dual number plane.

See also

Notes and references

  1. The Chinese University of Hong Kong, Math 5011, Chapter 3, Lebesgue and Hausdorff Measures
  2. Manin, Yuri I. "The notion of dimension in geometry and algebra" (PDF). Bulletin of the American Mathematical Society. 43 (2): 139–161. Retrieved 17 December 2021.
  3. Takashi Ono (1994) Variations on a Theme of Euler: quadratic forms, elliptic curves, and Hopf maps, chapter 5: Quadratic spherical maps, page 165, Plenum Press, ISBN   0-306-44789-4
  4. F. Reese Harvey (1990) Spinors and calibrations, "Generalized Spheres", page 42, Academic Press, ISBN   0-12-329650-1

Related Research Articles

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an n-dimensional generalization of the 1-dimensional circle and 2-dimensional sphere to any non-negative integer n. The n-sphere is the setting for n-dimensional spherical geometry.

<span class="mw-page-title-main">3-sphere</span> Mathematical object

In mathematics, a 3-sphere, glome or hypersphere is a higher-dimensional analogue of a sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. Topologically, a 3-sphere is an example of a 3-manifold, and it is also an n-sphere.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Ball (mathematics)</span> Volume space bounded by a sphere

In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball or an open ball.

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some such that for all

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

<span class="mw-page-title-main">Clifford torus</span> Geometrical object in four-dimensional space

In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S1
a
and S1
b
. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1
a
and S1
b
each exists in its own independent embedding space R2
a
and R2
b
, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

<span class="mw-page-title-main">Pu's inequality</span>

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

In Riemannian geometry, the filling radius of a Riemannian manifold X is a metric invariant of X. It was originally introduced in 1983 by Mikhail Gromov, who used it to prove his systolic inequality for essential manifolds, vastly generalizing Loewner's torus inequality and Pu's inequality for the real projective plane, and creating systolic geometry in its modern form.

In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity.

Volume of an <i>n</i>-ball Size of a mathematical ball

In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.