In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.
The real number can be expressed via a two-dimension recurrence relation. Closed-form expressions involve the gamma, factorial, or double factorial function. The volume can also be expressed in terms of , the area of the unit n-sphere.
The first volumes are as follows:
Dimension | Volume of a ball of radius R | Radius of a ball of volume V |
---|---|---|
0 | (all 0-balls have volume 1) | |
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 | ||
n | Vn(R) | Rn(V) |
The n-dimensional volume of a Euclidean ball of radius R in n-dimensional Euclidean space is: [1]
where Γ is Euler's gamma function. The gamma function is offset from but otherwise extends the factorial function to non-integer arguments. It satisfies Γ(n) = (n − 1)! if n is a positive integer and Γ(n + 1/2) = (n − 1/2) · (n − 3/2) · … · 1/2 · π1/2 if n is a non-negative integer.
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:
This allows computation of Vn(R) in approximately n / 2 steps.
The volume can also be expressed in terms of an (n − 1)-ball using the one-dimension recurrence relation:
Inverting the above, the radius of an n-ball of volume V can be expressed recursively in terms of the radius of an (n − 2)- or (n − 1)-ball:
Using explicit formulas for particular values of the gamma function at the integers and half-integers gives formulas for the volume of a Euclidean ball in terms of factorials. For non-negative integer k, these are:
The volume can also be expressed in terms of double factorials. For a positive odd integer 2k + 1, the double factorial is defined by
The volume of an odd-dimensional ball is
There are multiple conventions for double factorials of even integers. Under the convention in which the double factorial satisfies
the volume of an n-dimensional ball is, regardless of whether n is even or odd,
Instead of expressing the volume V of the ball in terms of its radius R, the formulas can be inverted to express the radius as a function of the volume:
Stirling's approximation for the gamma function can be used to approximate the volume when the number of dimensions is high.
In particular, for any fixed value of R the volume tends to a limiting value of 0 as n goes to infinity. Which value of n maximizes Vn(R) depends upon the value of R; for example, the volume Vn(1) is increasing for 0 ≤ n ≤ 5, achieves its maximum when n = 5, and is decreasing for n ≥ 5. [2]
Also, there is an asymptotic formula for the surface area [3]
Let An − 1(R) denote the hypervolume of the (n − 1)-sphere of radius R. The (n − 1)-sphere is the (n − 1)-dimensional boundary (surface) of the n-dimensional ball of radius R, and the sphere's hypervolume and the ball's hypervolume are related by:
Thus, An − 1(R) inherits formulas and recursion relationships from Vn(R), such as
There are also formulas in terms of factorials and double factorials.
There are many proofs of the above formulas.
An important step in several proofs about volumes of n-balls, and a generally useful fact besides, is that the volume of the n-ball of radius R is proportional to Rn:
The proportionality constant is the volume of the unit ball.
This is a special case of a general fact about volumes in n-dimensional space: If K is a body (measurable set) in that space and RK is the body obtained by stretching in all directions by the factor R then the volume of RK equals Rn times the volume of K. This is a direct consequence of the change of variables formula:
where dx = dx1…dxn and the substitution x = Ry was made.
Another proof of the above relation, which avoids multi-dimensional integration, uses induction: The base case is n = 0, where the proportionality is obvious. For the inductive step, assume that proportionality is true in dimension n − 1. Note that the intersection of an n-ball with a hyperplane is an (n − 1)-ball. When the volume of the n-ball is written as an integral of volumes of (n − 1)-balls:
it is possible by the inductive hypothesis to remove a factor of R from the radius of the (n − 1)-ball to get:
Making the change of variables t = x/R leads to:
which demonstrates the proportionality relation in dimension n. By induction, the proportionality relation is true in all dimensions.
A proof of the recursion formula relating the volume of the n-ball and an (n − 2)-ball can be given using the proportionality formula above and integration in cylindrical coordinates. Fix a plane through the center of the ball. Let r denote the distance between a point in the plane and the center of the sphere, and let θ denote the azimuth. Intersecting the n-ball with the (n − 2)-dimensional plane defined by fixing a radius and an azimuth gives an (n − 2)-ball of radius √R2 − r2. The volume of the ball can therefore be written as an iterated integral of the volumes of the (n − 2)-balls over the possible radii and azimuths:
The azimuthal coordinate can be immediately integrated out. Applying the proportionality relation shows that the volume equals
The integral can be evaluated by making the substitution u = 1 − (r/R)2
to get
which is the two-dimension recursion formula.
The same technique can be used to give an inductive proof of the volume formula. The base cases of the induction are the 0-ball and the 1-ball, which can be checked directly using the facts Γ(1) = 1 and Γ(3/2) = 1/2 · Γ(1/2) = √π/2. The inductive step is similar to the above, but instead of applying proportionality to the volumes of the (n − 2)-balls, the inductive hypothesis is applied instead.
The proportionality relation can also be used to prove the recursion formula relating the volumes of an n-ball and an (n − 1)-ball. As in the proof of the proportionality formula, the volume of an n-ball can be written as an integral over the volumes of (n − 1)-balls. Instead of making a substitution, however, the proportionality relation can be applied to the volumes of the (n − 1)-balls in the integrand:
The integrand is an even function, so by symmetry the interval of integration can be restricted to [0, R]. On the interval [0, R], it is possible to apply the substitution u = (x/R)2
. This transforms the expression into
The integral is a value of a well-known special function called the beta function Β(x, y), and the volume in terms of the beta function is
The beta function can be expressed in terms of the gamma function in much the same way that factorials are related to binomial coefficients. Applying this relationship gives
Using the value Γ(1/2) = √π gives the one-dimension recursion formula:
As with the two-dimension recursive formula, the same technique can be used to give an inductive proof of the volume formula.
The volume of the n-ball can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ1, …, φn − 1, where the domain of each φ except φn − 1 is [0, π), and the domain of φn − 1 is [0, 2π). The spherical volume element is:
and the volume is the integral of this quantity over r between 0 and R and all possible angles:
Each of the factors in the integrand depends on only a single variable, and therefore the iterated integral can be written as a product of integrals:
The integral over the radius is Rn/n. The intervals of integration on the angular coordinates can, by the symmetry of the sine about π/2, be changed to [0, π/2]:
Each of the remaining integrals is now a particular value of the beta function:
The beta functions can be rewritten in terms of gamma functions:
This product telescopes. Combining this with the values Γ(1/2) = √π and Γ(1) = 1 and the functional equation zΓ(z) = Γ(z + 1) leads to
The volume formula can be proven directly using Gaussian integrals. Consider the function:
This function is both rotationally invariant and a product of functions of one variable each. Using the fact that it is a product and the formula for the Gaussian integral gives:
where dV is the n-dimensional volume element. Using rotational invariance, the same integral can be computed in spherical coordinates:
where Sn − 1(r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If An − 1(r) is the surface area of an (n − 1)-sphere of radius r, then:
Applying this to the above integral gives the expression
Substituting t = r2/2:
The integral on the right is the gamma function evaluated at n/2.
Combining the two results shows that
To derive the volume of an n-ball of radius R from this formula, integrate the surface area of a sphere of radius r for 0 ≤ r ≤ R and apply the functional equation zΓ(z) = Γ(z + 1):
The relations and and thus the volumes of n-balls and areas of n-spheres can also be derived geometrically. As noted above, because a ball of radius is obtained from a unit ball by rescaling all directions in times, is proportional to , which implies . Also, because a ball is a union of concentric spheres and increasing radius by ε corresponds to a shell of thickness ε. Thus, ; equivalently, .
follows from existence of a volume-preserving bijection between the unit sphere and :
( is an n-tuple; ; we are ignoring sets of measure 0). Volume is preserved because at each point, the difference from isometry is a stretching in the xy plane (in times in the direction of constant ) that exactly matches the compression in the direction of the gradient of on (the relevant angles being equal). For , a similar argument was originally made by Archimedes in On the Sphere and Cylinder .
There are also explicit expressions for the volumes of balls in Lp norms. The Lp norm of the vector x = (x1, …, xn) in Rn is
and an Lp ball is the set of all vectors whose Lp norm is less than or equal to a fixed number called the radius of the ball. The case p = 2 is the standard Euclidean distance function, but other values of p occur in diverse contexts such as information theory, coding theory, and dimensional regularization.
The volume of an Lp ball of radius R is
These volumes satisfy recurrence relations similar to those for p = 2:
and
which can be written more concisely using a generalized binomial coefficient,
For p = 2, one recovers the recurrence for the volume of a Euclidean ball because 2Γ(3/2) = √π.
For example, in the cases p = 1 (taxicab norm) and p = ∞ (max norm), the volumes are:
These agree with elementary calculations of the volumes of cross-polytopes and hypercubes.
For most values of p, the surface area of an Lp sphere of radius R (the boundary of an Lpn-ball of radius R) cannot be calculated by differentiating the volume of an Lp ball with respect to its radius. While the volume can be expressed as an integral over the surface areas using the coarea formula, the coarea formula contains a correction factor that accounts for how the p-norm varies from point to point. For p = 2 and p = ∞, this factor is one. However, if p = 1 then the correction factor is √n: the surface area of an L1 sphere of radius R in Rn is √n times the derivative of the volume of an L1 ball. This can be seen most simply by applying the divergence theorem to the vector field F(x) = x to get
For other values of p, the constant is a complicated integral.
The volume formula can be generalized even further. For positive real numbers p1, …, pn, define the (p1, …, pn) ball with limit L ≥ 0 to be
The volume of this ball has been known since the time of Dirichlet: [4]
Using the harmonic mean and defining , the similarity to the volume formula for the Lp ball becomes clear.
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they exist as shapes in 1- and 2-dimensional space. As such, the -sphere is the setting for -dimensional spherical geometry.
The imaginary unit or unit imaginary number is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.
In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity as n. That is,
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.
In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.
In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.
In mathematics, the reciprocal gamma function is the function
The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.
In statistics, the Fisher–Tippett–Gnedenko theorem is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927), Fisher and Tippett (1928), Mises (1936), and Gnedenko (1943).
In mathematics, a unit sphere is a sphere of unit radius: the set of points at Euclidean distance 1 from some center point in three-dimensional space. More generally, the unit -sphere is an -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the plane. An (open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center.