Particular values of the gamma function Last updated October 15, 2025  Mathematical constants
The gamma function  is an important special function  in mathematics . Its particular values can be expressed in closed form for integer , half-integer , and some other rational arguments, but no simple expressions are known for the values at rational  points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.
Integers and half-integers For positive integer arguments, the gamma function coincides with the factorial . That is,
Γ ( n ) = ( n − 1 ) ! , {\displaystyle \Gamma (n)=(n-1)!,} and hence
Γ ( 1 ) = 1 , Γ ( 2 ) = 1 , Γ ( 3 ) = 2 , Γ ( 4 ) = 6 , Γ ( 5 ) = 24 , {\displaystyle {\begin{aligned}\Gamma (1)&=1,\\\Gamma (2)&=1,\\\Gamma (3)&=2,\\\Gamma (4)&=6,\\\Gamma (5)&=24,\end{aligned}}} and so on. For non-positive integers, the gamma function is not defined.
For positive half-integers k 2 {\displaystyle {\frac {k}{2}}} k ∈ 2 N ∗ + 1 {\displaystyle k\in 2\mathbb {N} ^{*}+1} 3 {\displaystyle 3} 
Γ ( k 2 ) = π ( k − 2 ) ! ! 2 k − 1 2 , {\displaystyle \Gamma \left({\tfrac {k}{2}}\right)={\sqrt {\pi }}{\frac {(k-2)!!}{2^{\frac {k-1}{2}}}}\,,} or equivalently, for non-negative integer values of  n :
Γ ( 1 2 + n ) = ( 2 n − 1 ) ! ! 2 n π = ( 2 n ) ! 4 n n ! π Γ ( 1 2 − n ) = ( − 2 ) n ( 2 n − 1 ) ! ! π = ( − 4 ) n n ! ( 2 n ) ! π {\displaystyle {\begin{aligned}\Gamma \left({\tfrac {1}{2}}+n\right)&={\frac {(2n-1)!!}{2^{n}}}\,{\sqrt {\pi }}={\frac {(2n)!}{4^{n}n!}}{\sqrt {\pi }}\\\Gamma \left({\tfrac {1}{2}}-n\right)&={\frac {(-2)^{n}}{(2n-1)!!}}\,{\sqrt {\pi }}={\frac {(-4)^{n}n!}{(2n)!}}{\sqrt {\pi }}\end{aligned}}} where n !!double factorial . In particular,
Γ ( 1 2 ) {\displaystyle \Gamma \left({\tfrac {1}{2}}\right)\,} = π {\displaystyle ={\sqrt {\pi }}\,} ≈ 1.772 453 850 905 516 0273 , {\displaystyle \approx 1.772\,453\,850\,905\,516\,0273\,,}  OEIS :   A002161   Γ ( 3 2 ) {\displaystyle \Gamma \left({\tfrac {3}{2}}\right)\,} = 1 2 π {\displaystyle ={\tfrac {1}{2}}{\sqrt {\pi }}\,} ≈ 0.886 226 925 452 758 0137 , {\displaystyle \approx 0.886\,226\,925\,452\,758\,0137\,,}  OEIS :   A019704   Γ ( 5 2 ) {\displaystyle \Gamma \left({\tfrac {5}{2}}\right)\,} = 3 4 π {\displaystyle ={\tfrac {3}{4}}{\sqrt {\pi }}\,} ≈ 1.329 340 388 179 137 0205 , {\displaystyle \approx 1.329\,340\,388\,179\,137\,0205\,,}  OEIS :   A245884   Γ ( 7 2 ) {\displaystyle \Gamma \left({\tfrac {7}{2}}\right)\,} = 15 8 π {\displaystyle ={\tfrac {15}{8}}{\sqrt {\pi }}\,} ≈ 3.323 350 970 447 842 5512 , {\displaystyle \approx 3.323\,350\,970\,447\,842\,5512\,,}  OEIS :   A245885   
and by means of the reflection formula ,
Γ ( − 1 2 ) {\displaystyle \Gamma \left(-{\tfrac {1}{2}}\right)\,} = − 2 π {\displaystyle =-2{\sqrt {\pi }}\,} ≈ − 3.544 907 701 811 032 0546 , {\displaystyle \approx -3.544\,907\,701\,811\,032\,0546\,,}  OEIS :   A019707   Γ ( − 3 2 ) {\displaystyle \Gamma \left(-{\tfrac {3}{2}}\right)\,} = 4 3 π {\displaystyle ={\tfrac {4}{3}}{\sqrt {\pi }}\,} ≈ 2.363 271 801 207 354 7031 , {\displaystyle \approx 2.363\,271\,801\,207\,354\,7031\,,}  OEIS :   A245886   Γ ( − 5 2 ) {\displaystyle \Gamma \left(-{\tfrac {5}{2}}\right)\,} = − 8 15 π {\displaystyle =-{\tfrac {8}{15}}{\sqrt {\pi }}\,} ≈ − 0.945 308 720 482 941 8812 , {\displaystyle \approx -0.945\,308\,720\,482\,941\,8812\,,}  OEIS :   A245887   
General rational argument In analogy with the half-integer formula,
Γ ( n + 1 3 ) = Γ ( 1 3 ) ( 3 n − 2 ) ! ! ! 3 n Γ ( n + 1 4 ) = Γ ( 1 4 ) ( 4 n − 3 ) ! ! ! ! 4 n Γ ( n + 1 q ) = Γ ( 1 q ) ( q n − ( q − 1 ) ) ! ( q ) q n Γ ( n + p q ) = Γ ( p q ) 1 q n ∏ k = 1 n ( k q + p − q ) {\displaystyle {\begin{aligned}\Gamma \left(n+{\tfrac {1}{3}}\right)&=\Gamma \left({\tfrac {1}{3}}\right){\frac {(3n-2)!!!}{3^{n}}}\\\Gamma \left(n+{\tfrac {1}{4}}\right)&=\Gamma \left({\tfrac {1}{4}}\right){\frac {(4n-3)!!!!}{4^{n}}}\\\Gamma \left(n+{\tfrac {1}{q}}\right)&=\Gamma \left({\tfrac {1}{q}}\right){\frac {{\big (}qn-(q-1){\big )}!^{(q)}}{q^{n}}}\\\Gamma \left(n+{\tfrac {p}{q}}\right)&=\Gamma \left({\tfrac {p}{q}}\right){\frac {1}{q^{n}}}\prod _{k=1}^{n}(kq+p-q)\end{aligned}}} where n !(q ) q th multifactorial  of n . Numerically,
Γ ( 1 3 ) ≈ 2.678 938 534 707 747 6337 {\displaystyle \Gamma \left({\tfrac {1}{3}}\right)\approx 2.678\,938\,534\,707\,747\,6337}  OEIS :   A073005   Γ ( 1 4 ) ≈ 3.625 609 908 221 908 3119 {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)\approx 3.625\,609\,908\,221\,908\,3119}  OEIS :   A068466   Γ ( 1 5 ) ≈ 4.590 843 711 998 803 0532 {\displaystyle \Gamma \left({\tfrac {1}{5}}\right)\approx 4.590\,843\,711\,998\,803\,0532}  OEIS :   A175380   Γ ( 1 6 ) ≈ 5.566 316 001 780 235 2043 {\displaystyle \Gamma \left({\tfrac {1}{6}}\right)\approx 5.566\,316\,001\,780\,235\,2043}  OEIS :   A175379   Γ ( 1 7 ) ≈ 6.548 062 940 247 824 4377 {\displaystyle \Gamma \left({\tfrac {1}{7}}\right)\approx 6.548\,062\,940\,247\,824\,4377}  OEIS :   A220086   Γ ( 1 8 ) ≈ 7.533 941 598 797 611 9047 {\displaystyle \Gamma \left({\tfrac {1}{8}}\right)\approx 7.533\,941\,598\,797\,611\,9047}  OEIS :   A203142   .Additionally,
lim n → ∞ ( n − Γ ( 1 n ) ) = γ {\displaystyle \lim _{n\to \infty }\left(n-\Gamma \left({\tfrac {1}{n}}\right)\right)=\gamma } where γ {\displaystyle \gamma } Euler–Mascheroni constant .
It is unknown whether these constants are transcendental  in general, but Γ( 1 / 3    and Γ( 1 / 4    were shown to be transcendental by G. V. Chudnovsky . Γ( 1 / 4  / 4 √ π   has also long been known to be transcendental, and Yuri Nesterenko  proved in 1996 that Γ( 1 / 4   , π , and e π algebraically independent .
For n ≥ 2 {\displaystyle n\geq 2} Γ ( 1 n ) {\displaystyle \Gamma \left({\tfrac {1}{n}}\right)} Γ ( 2 n ) {\displaystyle \Gamma \left({\tfrac {2}{n}}\right)}  [ 1]  
The number Γ ( 1 4 ) {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)} lemniscate constant  ϖ {\displaystyle \varpi } 
Γ ( 1 4 ) = 2 ϖ 2 π {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)={\sqrt {2\varpi {\sqrt {2\pi }}}}} Borwein and Zucker have found that Γ( n / 24    can be expressed algebraically in terms of π , K (k (1))K (k (2))K (k (3))K (k (6))K (k (N ))complete elliptic integral of the first kind . This permits efficiently approximating the gamma function of rational arguments to high precision using quadratically convergent  arithmetic–geometric mean  iterations. For example:
Γ ( 1 6 ) = 3 π Γ ( 1 3 ) 2 2 3 Γ ( 1 4 ) = 2 K ( 1 2 ) π Γ ( 1 3 ) = 2 7 / 9 π K ( 3 − 1 2 2 ) 3 3 12 Γ ( 1 8 ) Γ ( 3 8 ) = 8 2 4 ( 2 − 1 ) π K ( 3 − 2 2 ) Γ ( 1 8 ) Γ ( 3 8 ) = 2 ( 1 + 2 ) K ( 1 2 ) π 4 {\displaystyle {\begin{aligned}\Gamma \left({\tfrac {1}{6}}\right)&={\frac {{\sqrt {\frac {3}{\pi }}}\Gamma \left({\frac {1}{3}}\right)^{2}}{\sqrt[{3}]{2}}}\\\Gamma \left({\tfrac {1}{4}}\right)&=2{\sqrt {K\left({\tfrac {1}{2}}\right){\sqrt {\pi }}}}\\\Gamma \left({\tfrac {1}{3}}\right)&={\frac {2^{7/9}{\sqrt[{3}]{\pi K\left({\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)}}}{\sqrt[{12}]{3}}}\\\Gamma \left({\tfrac {1}{8}}\right)\Gamma \left({\tfrac {3}{8}}\right)&=8{\sqrt[{4}]{2}}{\sqrt {\left({\sqrt {2}}-1\right)\pi }}K\left(3-2{\sqrt {2}}\right)\\{\frac {\Gamma \left({\frac {1}{8}}\right)}{\Gamma \left({\frac {3}{8}}\right)}}&={\frac {2{\sqrt {\left(1+{\sqrt {2}}\right)K\left({\frac {1}{2}}\right)}}}{\sqrt[{4}]{\pi }}}\end{aligned}}} No similar relations are known for Γ( 1 / 5    or other denominators.
In particular, where AGM() is the arithmetic–geometric mean , we have [ 2]  
Γ ( 1 3 ) = 2 1 9 ( 2 π ) 2 3 3 1 12 ⋅ AGM  ( 2 , 2 + 3 ) 1 3 {\displaystyle \Gamma \left({\tfrac {1}{3}}\right)={\frac {2^{\frac {1}{9}}(2\pi )^{\frac {2}{3}}}{3^{\frac {1}{12}}\cdot \operatorname {AGM} \left(2,{\sqrt {2+{\sqrt {3}}}}\right)^{\frac {1}{3}}}}} Γ ( 1 4 ) = ( 2 π ) 3 2 AGM  ( 2 , 1 ) {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)={\sqrt {\frac {(2\pi )^{\frac {3}{2}}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}}}} Γ ( 1 6 ) = 2 14 9 ⋅ 3 1 3 ⋅ π 5 6 AGM  ( 1 + 3 , 8 ) 2 3 . {\displaystyle \Gamma \left({\tfrac {1}{6}}\right)={\frac {2^{\frac {14}{9}}\cdot 3^{\frac {1}{3}}\cdot \pi ^{\frac {5}{6}}}{\operatorname {AGM} \left(1+{\sqrt {3}},{\sqrt {8}}\right)^{\frac {2}{3}}}}.} Other formulas include the infinite products  
Γ ( 1 4 ) = ( 2 π ) 3 4 ∏ k = 1 ∞ tanh  ( π k 2 ) {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)=(2\pi )^{\frac {3}{4}}\prod _{k=1}^{\infty }\tanh \left({\frac {\pi k}{2}}\right)} and
Γ ( 1 4 ) = A 3 e − G π 2 1 6 π ∏ k = 1 ∞ ( 1 − 1 2 k ) k ( − 1 ) k {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)=A^{3}e^{-{\frac {G}{\pi }}}2^{\frac {1}{6}}{\sqrt {\pi }}\prod _{k=1}^{\infty }\left(1-{\frac {1}{2k}}\right)^{k(-1)^{k}}} where A  is the Glaisher–Kinkelin constant  and G  is Catalan's constant .
The following two representations for  Γ( 3 / 4    were given by I. Mező [ 3]  
π e π 2 1 Γ ( 3 4 ) 2 = i ∑ k = − ∞ ∞ e π ( k − 2 k 2 ) θ 1 ( i π 2 ( 2 k − 1 ) , e − π ) , {\displaystyle {\sqrt {\frac {\pi {\sqrt {e^{\pi }}}}{2}}}{\frac {1}{\Gamma \left({\frac {3}{4}}\right)^{2}}}=i\sum _{k=-\infty }^{\infty }e^{\pi (k-2k^{2})}\theta _{1}\left({\frac {i\pi }{2}}(2k-1),e^{-\pi }\right),} and
π 2 1 Γ ( 3 4 ) 2 = ∑ k = − ∞ ∞ θ 4 ( i k π , e − π ) e 2 π k 2 , {\displaystyle {\sqrt {\frac {\pi }{2}}}{\frac {1}{\Gamma \left({\frac {3}{4}}\right)^{2}}}=\sum _{k=-\infty }^{\infty }{\frac {\theta _{4}(ik\pi ,e^{-\pi })}{e^{2\pi k^{2}}}},} where θ 1 θ 4 Jacobi theta functions .
There also exist a number of Malmsten integrals  for certain values of the gamma function: [ 4]  
∫ 1 ∞ ln  ln  t 1 + t 2 = π 4 ( 2 ln  2 + 3 ln  π − 4 Γ ( 1 4 ) ) {\displaystyle \int _{1}^{\infty }{\frac {\ln \ln t}{1+t^{2}}}={\frac {\pi }{4}}\left(2\ln 2+3\ln \pi -4\Gamma \left({\tfrac {1}{4}}\right)\right)} ∫ 1 ∞ ln  ln  t 1 + t + t 2 = π 6 3 ( 8 ln  2 π − 3 ln  3 − 12 Γ ( 1 3 ) ) {\displaystyle \int _{1}^{\infty }{\frac {\ln \ln t}{1+t+t^{2}}}={\frac {\pi }{6{\sqrt {3}}}}\left(8\ln 2\pi -3\ln 3-12\Gamma \left({\tfrac {1}{3}}\right)\right)} Products Some product identities include:
∏ r = 1 2 Γ ( r 3 ) = 2 π 3 ≈ 3.627 598 728 468 435 7012 {\displaystyle \prod _{r=1}^{2}\Gamma \left({\tfrac {r}{3}}\right)={\frac {2\pi }{\sqrt {3}}}\approx 3.627\,598\,728\,468\,435\,7012}  OEIS :   A186706   ∏ r = 1 3 Γ ( r 4 ) = 2 π 3 ≈ 7.874 804 972 861 209 8721 {\displaystyle \prod _{r=1}^{3}\Gamma \left({\tfrac {r}{4}}\right)={\sqrt {2\pi ^{3}}}\approx 7.874\,804\,972\,861\,209\,8721}  OEIS :   A220610   ∏ r = 1 4 Γ ( r 5 ) = 4 π 2 5 ≈ 17.655 285 081 493 524 2483 {\displaystyle \prod _{r=1}^{4}\Gamma \left({\tfrac {r}{5}}\right)={\frac {4\pi ^{2}}{\sqrt {5}}}\approx 17.655\,285\,081\,493\,524\,2483} ∏ r = 1 5 Γ ( r 6 ) = 4 π 5 3 ≈ 40.399 319 122 003 790 0785 {\displaystyle \prod _{r=1}^{5}\Gamma \left({\tfrac {r}{6}}\right)=4{\sqrt {\frac {\pi ^{5}}{3}}}\approx 40.399\,319\,122\,003\,790\,0785} ∏ r = 1 6 Γ ( r 7 ) = 8 π 3 7 ≈ 93.754 168 203 582 503 7970 {\displaystyle \prod _{r=1}^{6}\Gamma \left({\tfrac {r}{7}}\right)={\frac {8\pi ^{3}}{\sqrt {7}}}\approx 93.754\,168\,203\,582\,503\,7970} ∏ r = 1 7 Γ ( r 8 ) = 4 π 7 ≈ 219.828 778 016 957 263 6207 {\displaystyle \prod _{r=1}^{7}\Gamma \left({\tfrac {r}{8}}\right)=4{\sqrt {\pi ^{7}}}\approx 219.828\,778\,016\,957\,263\,6207} In general:
∏ r = 1 n Γ ( r n + 1 ) = ( 2 π ) n n + 1 {\displaystyle \prod _{r=1}^{n}\Gamma \left({\tfrac {r}{n+1}}\right)={\sqrt {\frac {(2\pi )^{n}}{n+1}}}} From those products can be deduced other values, for example, from the former equations for ∏ r = 1 3 Γ ( r 4 ) {\displaystyle \prod _{r=1}^{3}\Gamma \left({\tfrac {r}{4}}\right)} Γ ( 1 4 ) {\displaystyle \Gamma \left({\tfrac {1}{4}}\right)} Γ ( 2 4 ) {\displaystyle \Gamma \left({\tfrac {2}{4}}\right)} 
Γ ( 3 4 ) = ( π 2 ) 1 4 AGM  ( 2 , 1 ) 1 2 {\displaystyle \Gamma \left({\tfrac {3}{4}}\right)=\left({\tfrac {\pi }{2}}\right)^{\tfrac {1}{4}}{\operatorname {AGM} \left({\sqrt {2}},1\right)}^{\tfrac {1}{2}}} 
Other rational relations include
Γ ( 1 5 ) Γ ( 4 15 ) Γ ( 1 3 ) Γ ( 2 15 ) = 2 3 20 5 6 5 − 7 5 + 6 − 6 5 4 {\displaystyle {\frac {\Gamma \left({\tfrac {1}{5}}\right)\Gamma \left({\tfrac {4}{15}}\right)}{\Gamma \left({\tfrac {1}{3}}\right)\Gamma \left({\tfrac {2}{15}}\right)}}={\frac {{\sqrt {2}}\,{\sqrt[{20}]{3}}}{{\sqrt[{6}]{5}}\,{\sqrt[{4}]{5-{\frac {7}{\sqrt {5}}}+{\sqrt {6-{\frac {6}{\sqrt {5}}}}}}}}}} Γ ( 1 20 ) Γ ( 9 20 ) Γ ( 3 20 ) Γ ( 7 20 ) = 5 4 ( 1 + 5 ) 2 {\displaystyle {\frac {\Gamma \left({\tfrac {1}{20}}\right)\Gamma \left({\tfrac {9}{20}}\right)}{\Gamma \left({\tfrac {3}{20}}\right)\Gamma \left({\tfrac {7}{20}}\right)}}={\frac {{\sqrt[{4}]{5}}\left(1+{\sqrt {5}}\right)}{2}}}  [ 5]  Γ ( 1 5 ) 2 Γ ( 1 10 ) Γ ( 3 10 ) = 1 + 5 2 7 10 5 4 {\displaystyle {\frac {\Gamma \left({\frac {1}{5}}\right)^{2}}{\Gamma \left({\frac {1}{10}}\right)\Gamma \left({\frac {3}{10}}\right)}}={\frac {\sqrt {1+{\sqrt {5}}}}{2^{\tfrac {7}{10}}{\sqrt[{4}]{5}}}}} and many more relations for Γ( n / d    where the denominator d divides 24 or 60. [ 6]  
Gamma quotients with algebraic values must be "poised" in the sense that the sum of arguments is the same (modulo 1) for the denominator and the numerator.
A more sophisticated example:
Γ ( 11 42 ) Γ ( 2 7 ) Γ ( 1 21 ) Γ ( 1 2 ) = 8 sin  ( π 7 ) sin  ( π 21 ) sin  ( 4 π 21 ) sin  ( 5 π 21 ) 2 1 42 3 9 28 7 1 3 {\displaystyle {\frac {\Gamma \left({\frac {11}{42}}\right)\Gamma \left({\frac {2}{7}}\right)}{\Gamma \left({\frac {1}{21}}\right)\Gamma \left({\frac {1}{2}}\right)}}={\frac {8\sin \left({\frac {\pi }{7}}\right){\sqrt {\sin \left({\frac {\pi }{21}}\right)\sin \left({\frac {4\pi }{21}}\right)\sin \left({\frac {5\pi }{21}}\right)}}}{2^{\frac {1}{42}}3^{\frac {9}{28}}7^{\frac {1}{3}}}}}  [ 7]  Imaginary and complex arguments The gamma function at the imaginary unit  i  = √ −1  OEIS :   A212877   ,  OEIS :   A212878   :
Γ ( i ) = ( − 1 + i ) ! ≈ − 0.1549 − 0.4980 i . {\displaystyle \Gamma (i)=(-1+i)!\approx -0.1549-0.4980i.} It may also be given in terms of the Barnes G -function :
Γ ( i ) = G ( 1 + i ) G ( i ) = e − log  G ( i ) + log  G ( 1 + i ) . {\displaystyle \Gamma (i)={\frac {G(1+i)}{G(i)}}=e^{-\log G(i)+\log G(1+i)}.} Curiously enough, Γ ( i ) {\displaystyle \Gamma (i)}  [ 8]  
∫ 0 π / 2 { cot  ( x ) } d x = 1 − π 2 + i 2 log  ( π sinh  ( π ) Γ ( i ) 2 ) . {\displaystyle \int _{0}^{\pi /2}\{\cot(x)\}\,dx=1-{\frac {\pi }{2}}+{\frac {i}{2}}\log \left({\frac {\pi }{\sinh(\pi )\Gamma (i)^{2}}}\right).} Here { ⋅ } {\displaystyle \{\cdot \}} fractional part .
Because of the Euler Reflection Formula , and the fact that Γ ( z ¯ ) = Γ ¯ ( z ) {\displaystyle \Gamma ({\bar {z}})={\bar {\Gamma }}(z)} modulus squared  of the Gamma function evaluated on the imaginary axis:
| Γ ( i κ ) | 2 = π κ sinh  ( π κ ) {\displaystyle \left|\Gamma (i\kappa )\right|^{2}={\frac {\pi }{\kappa \sinh(\pi \kappa )}}} The above integral therefore relates to the phase of Γ ( i ) {\displaystyle \Gamma (i)} 
The gamma function with other complex arguments returns
Γ ( 1 + i ) = i Γ ( i ) ≈ 0.498 − 0.155 i {\displaystyle \Gamma (1+i)=i\Gamma (i)\approx 0.498-0.155i} Γ ( 1 − i ) = − i Γ ( − i ) ≈ 0.498 + 0.155 i {\displaystyle \Gamma (1-i)=-i\Gamma (-i)\approx 0.498+0.155i} Γ ( 1 2 + 1 2 i ) ≈ 0.818 163 9995 − 0.763 313 8287 i {\displaystyle \Gamma ({\tfrac {1}{2}}+{\tfrac {1}{2}}i)\approx 0.818\,163\,9995-0.763\,313\,8287\,i} Γ ( 1 2 − 1 2 i ) ≈ 0.818 163 9995 + 0.763 313 8287 i {\displaystyle \Gamma ({\tfrac {1}{2}}-{\tfrac {1}{2}}i)\approx 0.818\,163\,9995+0.763\,313\,8287\,i} Γ ( 5 + 3 i ) ≈ 0.016 041 8827 − 9.433 293 2898 i {\displaystyle \Gamma (5+3i)\approx 0.016\,041\,8827-9.433\,293\,2898\,i} Γ ( 5 − 3 i ) ≈ 0.016 041 8827 + 9.433 293 2898 i . {\displaystyle \Gamma (5-3i)\approx 0.016\,041\,8827+9.433\,293\,2898\,i.} Other constants The gamma function has a local minimum  on the positive real axis
x min = 1.461 632 144 968 362 341 262 659 5423 … {\displaystyle x_{\min }=1.461\,632\,144\,968\,362\,341\,262\,659\,5423\ldots \,}  OEIS :   A030169   with the value
Γ ( x min ) = 0.885 603 194 410 888 700 278 815 9005 … {\displaystyle \Gamma \left(x_{\min }\right)=0.885\,603\,194\,410\,888\,700\,278\,815\,9005\ldots \,}  OEIS :   A030171   .Integrating the reciprocal gamma function  along the positive real axis also gives the Fransén–Robinson constant .
On the negative real axis, the first local maxima and minima (zeros of the digamma function ) are:
Approximate local extrema of Γ(x )  x Γ(x )  OEIS   083 008 264 455 409 258 269 3045 643 611 155 005 089 121 963 9933  OEIS :   A175472   498 473 162 390 458 778 286 0437 − 407 258 339 680 135 823 582 0396  OEIS :   A175473   720 868 444 144 650 001 537 7157 136 358 401 241 920 095 528 0294  OEIS :   A175474   293 366 436 901 097 839 181 5669 − 127 539 834 366 250 438 230 0889  OEIS :   A256681   237 761 743 142 441 714 598 1511 779 639 587 319 400 760 483 5708  OEIS :   A256682   162 441 556 885 535 849 474 1745 − 324 594 482 614 850 521 711 9238  OEIS :   A256683   418 213 073 426 742 829 855 8886 397 396 608 949 767 301 307 4887  OEIS :   A256684   788 325 031 626 037 440 098 8918 − 181 878 444 909 404 188 101 4174  OEIS :   A256685   764 163 816 401 266 488 776 1608 020 925 290 446 526 668 753 6973  OEIS :   A256686   672 540 001 863 736 084 426 7649 − 002 157 416 104 522 850 540 5031  OEIS :   A256687   
The only values of x  > 0Γ(x ) = x   are x  = 1x  ≈ 382 285 390 897 691 415 644 3427  OEIS :   A218802   .
References  ↑   Waldschmidt, Michel (2006). "Transcendence of periods: the state of the art" . Pure and Applied Mathematics Quarterly . 2  (2): 435– 463. doi :10.4310/PAMQ.2006.v2.n2.a3 .  ↑    "Archived copy"  . Retrieved 2015-03-09  .  ↑   Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper's q -trigonometric functions", Proceedings of the American Mathematical Society , 141  (7): 2401– 2410, doi : 10.1090/s0002-9939-2013-11576-5     ↑   Blagouchine, Iaroslav V. (2014-10-01).  "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results"   . The Ramanujan Journal . 35  (1): 21– 110. doi :10.1007/s11139-013-9528-5 . ISSN     1572-9303 .  ↑    Weisstein, Eric W.  "Gamma Function" .  MathWorld   .  ↑    Raimundas Vidūnas, Expressions for Values of the Gamma Function    ↑    math.stackexchange.com    ↑    The webpage of István Mező   This page is based on this 
Wikipedia article  Text is available under the 
CC BY-SA 4.0  license; additional terms may apply.
Images, videos and audio are available under their respective licenses.