Beta function Last updated August 14, 2025  Mathematical function
  Contour plot  of the beta function  In mathematics , the beta function , also called the Euler integral  of the first kind, is a special function  that is closely related to the gamma function  and to binomial coefficients . It is defined by the integral  
B ( z 1 , z 2 ) = ∫ 0 1 t z 1 − 1 ( 1 − t ) z 2 − 1 d t {\displaystyle \mathrm {B} (z_{1},z_{2})=\int _{0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt} for complex number  inputs  z 1 , z 2 {\displaystyle z_{1},z_{2}} Re  ( z 1 ) , Re  ( z 2 ) > 0 {\displaystyle \operatorname {Re} (z_{1}),\operatorname {Re} (z_{2})>0} 
The beta function was studied by Leonhard Euler  and Adrien-Marie Legendre  and was given its name by Jacques Binet ; its symbol Β  is a Greek  capital beta .
Properties The beta function is symmetric , meaning that B ( z 1 , z 2 ) = B ( z 2 , z 1 ) {\displaystyle \mathrm {B} (z_{1},z_{2})=\mathrm {B} (z_{2},z_{1})} z 1 {\displaystyle z_{1}} z 2 {\displaystyle z_{2}}  [ 1]  
A key property of the beta function is its close relationship to the gamma function : [ 1]  
B ( z 1 , z 2 ) = Γ ( z 1 ) Γ ( z 2 ) Γ ( z 1 + z 2 ) {\displaystyle \mathrm {B} (z_{1},z_{2})={\frac {\Gamma (z_{1})\,\Gamma (z_{2})}{\Gamma (z_{1}+z_{2})}}} A proof is given below in §  Relationship to the gamma function .
The beta function is also closely related to binomial coefficients . When m  (or n , by symmetry) is a positive integer, it follows from the definition of the gamma function Γ  that [ 1]  
B ( m , n ) = ( m − 1 ) ! ( n − 1 ) ! ( m + n − 1 ) ! = m + n m n / ( m + n m ) {\displaystyle \mathrm {B} (m,n)={\frac {(m-1)!\,(n-1)!}{(m+n-1)!}}={\frac {m+n}{mn}}{\Bigg /}{\binom {m+n}{m}}} Relationship to the gamma function To derive this relation, write the product of two factorials as integrals. Since they are integrals in two separate variables, we can combine them into an iterated integral :
Γ ( z 1 ) Γ ( z 2 ) = ∫ u = 0 ∞   e − u u z 1 − 1 d u ⋅ ∫ v = 0 ∞   e − v v z 2 − 1 d v = ∫ v = 0 ∞ ∫ u = 0 ∞   e − u − v u z 1 − 1 v z 2 − 1 d u d v . {\displaystyle {\begin{aligned}\Gamma (z_{1})\Gamma (z_{2})&=\int _{u=0}^{\infty }\ e^{-u}u^{z_{1}-1}\,du\cdot \int _{v=0}^{\infty }\ e^{-v}v^{z_{2}-1}\,dv\\[6pt]&=\int _{v=0}^{\infty }\int _{u=0}^{\infty }\ e^{-u-v}u^{z_{1}-1}v^{z_{2}-1}\,du\,dv.\end{aligned}}} Changing variables by u  = st v  = s (1 − t )u + v  = s u  / (u+v)  = t s t 
Γ ( z 1 ) Γ ( z 2 ) = ∫ s = 0 ∞ ∫ t = 0 1 e − s ( s t ) z 1 − 1 ( s ( 1 − t ) ) z 2 − 1 s d t d s = ∫ s = 0 ∞ e − s s z 1 + z 2 − 1 d s ⋅ ∫ t = 0 1 t z 1 − 1 ( 1 − t ) z 2 − 1 d t = Γ ( z 1 + z 2 ) ⋅ B ( z 1 , z 2 ) . {\displaystyle {\begin{aligned}\Gamma (z_{1})\Gamma (z_{2})&=\int _{s=0}^{\infty }\int _{t=0}^{1}e^{-s}(st)^{z_{1}-1}(s(1-t))^{z_{2}-1}s\,dt\,ds\\[6pt]&=\int _{s=0}^{\infty }e^{-s}s^{z_{1}+z_{2}-1}\,ds\cdot \int _{t=0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt\\&=\Gamma (z_{1}+z_{2})\cdot \mathrm {B} (z_{1},z_{2}).\end{aligned}}} Dividing both sides by Γ ( z 1 + z 2 ) {\displaystyle \Gamma (z_{1}+z_{2})} 
The stated identity may be seen as a particular case of the identity for the integral of a convolution . Taking
f ( u ) := e − u u z 1 − 1 1 R + g ( u ) := e − u u z 2 − 1 1 R + , {\displaystyle {\begin{aligned}f(u)&:=e^{-u}u^{z_{1}-1}1_{\mathbb {R} _{+}}\\g(u)&:=e^{-u}u^{z_{2}-1}1_{\mathbb {R} _{+}},\end{aligned}}} one has:
Γ ( z 1 ) Γ ( z 2 ) = ∫ R f ( u ) d u ⋅ ∫ R g ( u ) d u = ∫ R ( f ∗ g ) ( u ) d u = B ( z 1 , z 2 ) Γ ( z 1 + z 2 ) . {\displaystyle \Gamma (z_{1})\Gamma (z_{2})=\int _{\mathbb {R} }f(u)\,du\cdot \int _{\mathbb {R} }g(u)\,du=\int _{\mathbb {R} }(f*g)(u)\,du=\mathrm {B} (z_{1},z_{2})\,\Gamma (z_{1}+z_{2}).} See The Gamma Function , page 18–19 [ 2]   for a derivation of this relation.
Differentiation of the beta function We have
∂ ∂ z 1 B ( z 1 , z 2 ) = B ( z 1 , z 2 ) ( Γ ′ ( z 1 ) Γ ( z 1 ) − Γ ′ ( z 1 + z 2 ) Γ ( z 1 + z 2 ) ) = B ( z 1 , z 2 ) ( ψ ( z 1 ) − ψ ( z 1 + z 2 ) ) , {\displaystyle {\frac {\partial }{\partial z_{1}}}\mathrm {B} (z_{1},z_{2})=\mathrm {B} (z_{1},z_{2})\left({\frac {\Gamma '(z_{1})}{\Gamma (z_{1})}}-{\frac {\Gamma '(z_{1}+z_{2})}{\Gamma (z_{1}+z_{2})}}\right)=\mathrm {B} (z_{1},z_{2}){\big (}\psi (z_{1})-\psi (z_{1}+z_{2}){\big )},} ∂ ∂ z m B ( z 1 , z 2 , … , z n ) = B ( z 1 , z 2 , … , z n ) ( ψ ( z m ) − ψ ( ∑ k = 1 n z k ) ) , 1 ≤ m ≤ n , {\displaystyle {\frac {\partial }{\partial z_{m}}}\mathrm {B} (z_{1},z_{2},\dots ,z_{n})=\mathrm {B} (z_{1},z_{2},\dots ,z_{n})\left(\psi (z_{m})-\psi \left(\sum _{k=1}^{n}z_{k}\right)\right),\quad 1\leq m\leq n,} where ψ ( z ) {\displaystyle \psi (z)} digamma function .
Approximation  Stirling's approximation  gives the asymptotic formula
B ( x , y ) ∼ 2 π x x − 1 / 2 y y − 1 / 2 ( x + y ) x + y − 1 / 2 {\displaystyle \mathrm {B} (x,y)\sim {\sqrt {2\pi }}{\frac {x^{x-1/2}y^{y-1/2}}{({x+y})^{x+y-1/2}}}} for large x  and large y . 
If on the other hand x  is large and y  is fixed, then
B ( x , y ) ∼ Γ ( y ) x − y . {\displaystyle \mathrm {B} (x,y)\sim \Gamma (y)\,x^{-y}.} The integral defining the beta function may be rewritten in a variety of ways, including the following:
B ( z 1 , z 2 ) = 2 ∫ 0 π / 2 ( sin  θ ) 2 z 1 − 1 ( cos  θ ) 2 z 2 − 1 d θ , = ∫ 0 ∞ t z 1 − 1 ( 1 + t ) z 1 + z 2 d t , = n ∫ 0 1 t n z 1 − 1 ( 1 − t n ) z 2 − 1 d t , = ( 1 − a ) z 2 ∫ 0 1 ( 1 − t ) z 1 − 1 t z 2 − 1 ( 1 − a t ) z 1 + z 2 d t for any  a ∈ R ≤ 1 , {\displaystyle {\begin{aligned}\mathrm {B} (z_{1},z_{2})&=2\int _{0}^{\pi /2}(\sin \theta )^{2z_{1}-1}(\cos \theta )^{2z_{2}-1}\,d\theta ,\\[6pt]&=\int _{0}^{\infty }{\frac {t^{z_{1}-1}}{(1+t)^{z_{1}+z_{2}}}}\,dt,\\[6pt]&=n\int _{0}^{1}t^{nz_{1}-1}(1-t^{n})^{z_{2}-1}\,dt,\\&=(1-a)^{z_{2}}\int _{0}^{1}{\frac {(1-t)^{z_{1}-1}t^{z_{2}-1}}{(1-at)^{z_{1}+z_{2}}}}dt\qquad {\text{for any }}a\in \mathbb {R} _{\leq 1},\end{aligned}}} where in the second-to-last identity n  is any positive real number. One may move from the first integral to the second one by substituting t = tan 2  ( θ ) {\displaystyle t=\tan ^{2}(\theta )} 
For values z = z 1 = z 2 ≠ 1 {\displaystyle z=z_{1}=z_{2}\neq 1} 
B ( z , z ) = 1 z ∫ 0 π / 2 1 ( sin  θ z + cos  θ z ) 2 z d θ {\displaystyle \mathrm {B} (z,z)={\frac {1}{z}}\int _{0}^{\pi /2}{\frac {1}{({\sqrt[{z}]{\sin \theta }}+{\sqrt[{z}]{\cos \theta }})^{2z}}}\,d\theta } The beta function can be written as an infinite sum [ 3]  
B ( x , y ) = ∑ n = 0 ∞ ( 1 − x ) n ( y + n ) n ! {\displaystyle \mathrm {B} (x,y)=\sum _{n=0}^{\infty }{\frac {(1-x)_{n}}{(y+n)\,n!}}} If x {\displaystyle x} y {\displaystyle y} z {\displaystyle z} 
B ( z , z ) = 2 ∑ n = 0 ∞ ( 2 z + n − 1 ) n ( − 1 ) n ( z + n ) n ! = lim x → 1 − 2 ∑ n = 0 ∞ ( − 2 z ) n x n ( z + n ) n ! {\displaystyle \mathrm {B} (z,z)=2\sum _{n=0}^{\infty }{\frac {(2z+n-1)_{n}(-1)^{n}}{(z+n)n!}}=\lim _{x\to 1^{-}}2\sum _{n=0}^{\infty }{\frac {(-2z)_{n}x^{n}}{(z+n)n!}}} (where ( x ) n {\displaystyle (x)_{n}} rising factorial ) and as an infinite product
B ( x , y ) = x + y x y ∏ n = 1 ∞ ( 1 + x y n ( x + y + n ) ) − 1 . {\displaystyle \mathrm {B} (x,y)={\frac {x+y}{xy}}\prod _{n=1}^{\infty }\left(1+{\dfrac {xy}{n(x+y+n)}}\right)^{-1}.} The beta function satisfies several identities analogous to corresponding identities for binomial coefficients, including a version of Pascal's identity  
B ( x , y ) = B ( x , y + 1 ) + B ( x + 1 , y ) {\displaystyle \mathrm {B} (x,y)=\mathrm {B} (x,y+1)+\mathrm {B} (x+1,y)} and a simple recurrence on one coordinate: 
B ( x + 1 , y ) = B ( x , y ) ⋅ x x + y , B ( x , y + 1 ) = B ( x , y ) ⋅ y x + y . {\displaystyle \mathrm {B} (x+1,y)=\mathrm {B} (x,y)\cdot {\dfrac {x}{x+y}},\quad \mathrm {B} (x,y+1)=\mathrm {B} (x,y)\cdot {\dfrac {y}{x+y}}.}  [ 4]  The positive integer values of the beta function are also the partial derivatives of a 2D function: for all nonnegative integers m {\displaystyle m} n {\displaystyle n} 
B ( m + 1 , n + 1 ) = ∂ m + n h ∂ a m ∂ b n ( 0 , 0 ) , {\displaystyle \mathrm {B} (m+1,n+1)={\frac {\partial ^{m+n}h}{\partial a^{m}\,\partial b^{n}}}(0,0),} where
h ( a , b ) = e a − e b a − b . {\displaystyle h(a,b)={\frac {e^{a}-e^{b}}{a-b}}.} The Pascal-like identity above implies that this function is a solution to the first-order partial differential equation  
h = h a + h b . {\displaystyle h=h_{a}+h_{b}.} For x , y ≥ 1 {\displaystyle x,y\geq 1} convolution  involving the truncated power function  t ↦ t + x {\displaystyle t\mapsto t_{+}^{x}} 
B ( x , y ) ⋅ ( t ↦ t + x + y − 1 ) = ( t ↦ t + x − 1 ) ∗ ( t ↦ t + y − 1 ) {\displaystyle \mathrm {B} (x,y)\cdot \left(t\mapsto t_{+}^{x+y-1}\right)={\Big (}t\mapsto t_{+}^{x-1}{\Big )}*{\Big (}t\mapsto t_{+}^{y-1}{\Big )}} Evaluations at particular points may simplify significantly; for example, 
B ( 1 , x ) = 1 x {\displaystyle \mathrm {B} (1,x)={\dfrac {1}{x}}} and
B ( x , 1 − x ) = π sin  ( π x ) , x ∉ Z {\displaystyle \mathrm {B} (x,1-x)={\dfrac {\pi }{\sin(\pi x)}},\qquad x\not \in \mathbb {Z} }  [ 5]  By taking x = 1 2 {\displaystyle x={\frac {1}{2}}} Γ ( 1 / 2 ) = π {\displaystyle \Gamma (1/2)={\sqrt {\pi }}} 
B ( x , y ) ⋅ B ( x + y , 1 − y ) = π x sin  ( π y ) . {\displaystyle \mathrm {B} (x,y)\cdot \mathrm {B} (x+y,1-y)={\frac {\pi }{x\sin(\pi y)}}.} Euler's integral for the beta function may be converted into an integral over the Pochhammer contour  C  as
( 1 − e 2 π i α ) ( 1 − e 2 π i β ) B ( α , β ) = ∫ C t α − 1 ( 1 − t ) β − 1 d t . {\displaystyle \left(1-e^{2\pi i\alpha }\right)\left(1-e^{2\pi i\beta }\right)\mathrm {B} (\alpha ,\beta )=\int _{C}t^{\alpha -1}(1-t)^{\beta -1}\,dt.} This Pochhammer contour integral converges for all values of α  and β  and so gives the analytic continuation  of the beta function.
Just as the gamma function for integers describes factorials , the beta function can define a binomial coefficient  after adjusting indices:
( n k ) = 1 ( n + 1 ) B ( n − k + 1 , k + 1 ) . {\displaystyle {\binom {n}{k}}={\frac {1}{(n+1)\,\mathrm {B} (n-k+1,k+1)}}.} Moreover, for integer n , Β  can be factored to give a closed form interpolation function for continuous values of k :
( n k ) = ( − 1 ) n n ! ⋅ sin  ( π k ) π ∏ i = 0 n ( k − i ) . {\displaystyle {\binom {n}{k}}=(-1)^{n}\,n!\cdot {\frac {\sin(\pi k)}{\pi \displaystyle \prod _{i=0}^{n}(k-i)}}.} Reciprocal beta function The reciprocal beta function  is the function  about the form
f ( x , y ) = 1 B ( x , y ) {\displaystyle f(x,y)={\frac {1}{\mathrm {B} (x,y)}}} Interestingly, their integral representations closely relate as the definite integral  of trigonometric functions  with product of its power and multiple-angle : [ 6]  
∫ 0 π sin x − 1  θ sin  y θ   d θ = π sin  y π 2 2 x − 1 x B ( x + y + 1 2 , x − y + 1 2 ) {\displaystyle \int _{0}^{\pi }\sin ^{x-1}\theta \sin y\theta ~d\theta ={\frac {\pi \sin {\frac {y\pi }{2}}}{2^{x-1}x\mathrm {B} \left({\frac {x+y+1}{2}},{\frac {x-y+1}{2}}\right)}}} ∫ 0 π sin x − 1  θ cos  y θ   d θ = π cos  y π 2 2 x − 1 x B ( x + y + 1 2 , x − y + 1 2 ) {\displaystyle \int _{0}^{\pi }\sin ^{x-1}\theta \cos y\theta ~d\theta ={\frac {\pi \cos {\frac {y\pi }{2}}}{2^{x-1}x\mathrm {B} \left({\frac {x+y+1}{2}},{\frac {x-y+1}{2}}\right)}}} ∫ 0 π cos x − 1  θ sin  y θ   d θ = π cos  y π 2 2 x − 1 x B ( x + y + 1 2 , x − y + 1 2 ) {\displaystyle \int _{0}^{\pi }\cos ^{x-1}\theta \sin y\theta ~d\theta ={\frac {\pi \cos {\frac {y\pi }{2}}}{2^{x-1}x\mathrm {B} \left({\frac {x+y+1}{2}},{\frac {x-y+1}{2}}\right)}}} ∫ 0 π 2 cos x − 1  θ cos  y θ   d θ = π 2 x x B ( x + y + 1 2 , x − y + 1 2 ) {\displaystyle \int _{0}^{\frac {\pi }{2}}\cos ^{x-1}\theta \cos y\theta ~d\theta ={\frac {\pi }{2^{x}x\mathrm {B} \left({\frac {x+y+1}{2}},{\frac {x-y+1}{2}}\right)}}} Incomplete beta function The incomplete beta function , a generalization of the beta function, is defined as [ 7]   [ 8]  
B ( x ; a , b ) = ∫ 0 x t a − 1 ( 1 − t ) b − 1 d t . {\displaystyle \mathrm {B} (x;\,a,b)=\int _{0}^{x}t^{a-1}\,(1-t)^{b-1}\,dt.} For x  = 1a  and b , the incomplete beta function will be a polynomial of degree a   +  b   -  1 with rational coefficients.
By the substitution t = sin 2  θ {\displaystyle t=\sin ^{2}\theta } t = 1 1 + s {\displaystyle t={\frac {1}{1+s}}} 
B ( x ; a , b ) = 2 ∫ 0 arcsin  x sin 2 a − 1  θ cos 2 b − 1  θ d θ = ∫ 1 − x x ∞ s b − 1 ( 1 + s ) a + b d s {\displaystyle \mathrm {B} (x;\,a,b)=2\int _{0}^{\arcsin {\sqrt {x}}}\sin ^{2a-1\!}\theta \cos ^{2b-1\!}\theta \,\mathrm {d} \theta =\int _{\frac {1-x}{x}}^{\infty }{\frac {s^{b-1}}{(1+s)^{a+b}}}\,\mathrm {d} s} The regularized incomplete beta function  (or regularized beta function  for short) is defined in terms of the incomplete beta function and the complete beta function:
I x ( a , b ) = B ( x ; a , b ) B ( a , b ) . {\displaystyle I_{x}(a,b)={\frac {\mathrm {B} (x;\,a,b)}{\mathrm {B} (a,b)}}.} The regularized incomplete beta function is the cumulative distribution function  of the beta distribution , and is related to the cumulative distribution function  F ( k ; n , p ) {\displaystyle F(k;\,n,p)} random variable  X  following a binomial distribution  with probability of single success p  and number of Bernoulli trials n :
F ( k ; n , p ) = Pr ( X ≤ k ) = I 1 − p ( n − k , k + 1 ) = 1 − I p ( k + 1 , n − k ) . {\displaystyle F(k;\,n,p)=\Pr \left(X\leq k\right)=I_{1-p}(n-k,k+1)=1-I_{p}(k+1,n-k).} Properties I 0 ( a , b ) = 0 , I 1 ( a , b ) = 1 , I x ( a , 1 ) = x a , I x ( 1 , b ) = 1 − ( 1 − x ) b , I x ( a , b ) = 1 − I 1 − x ( b , a ) , I x ( a + 1 , b ) = I x ( a , b ) − x a ( 1 − x ) b a B ( a , b ) , I x ( a , b + 1 ) = I x ( a , b ) + x a ( 1 − x ) b b B ( a , b ) , ∫ B ( x ; a , b ) d x = x B ( x ; a , b ) − B ( x ; a + 1 , b ) , B ( x ; a , b ) = ( − 1 ) a B ( x x − 1 ; a , 1 − a − b ) . {\displaystyle {\begin{aligned}I_{0}(a,b)&=0,\\I_{1}(a,b)&=1,\\I_{x}(a,1)&=x^{a},\\I_{x}(1,b)&=1-(1-x)^{b},\\I_{x}(a,b)&=1-I_{1-x}(b,a),\\I_{x}(a+1,b)&=I_{x}(a,b)-{\frac {x^{a}(1-x)^{b}}{a\mathrm {B} (a,b)}},\\I_{x}(a,b+1)&=I_{x}(a,b)+{\frac {x^{a}(1-x)^{b}}{b\mathrm {B} (a,b)}},\\\int \mathrm {B} (x;a,b)\mathrm {d} x&=x\mathrm {B} (x;a,b)-\mathrm {B} (x;a+1,b),\\\mathrm {B} (x;a,b)&=(-1)^{a}\mathrm {B} \left({\frac {x}{x-1}};a,1-a-b\right).\end{aligned}}} Continued fraction expansion The continued fraction  expansion
B ( x ; a , b ) = x a ( 1 − x ) b a ( 1 + d 1 1 + d 2 1 + d 3 1 + d 4 1 + ⋯ ) {\displaystyle \mathrm {B} (x;\,a,b)={\frac {x^{a}(1-x)^{b}}{a\left(1+{\frac {{d}_{1}}{1+}}{\frac {{d}_{2}}{1+}}{\frac {{d}_{3}}{1+}}{\frac {{d}_{4}}{1+}}\cdots \right)}}} with odd and even coefficients respectively
d 2 m + 1 = − ( a + m ) ( a + b + m ) x ( a + 2 m ) ( a + 2 m + 1 ) {\displaystyle {d}_{2m+1}=-{\frac {(a+m)(a+b+m)x}{(a+2m)(a+2m+1)}}} d 2 m = m ( b − m ) x ( a + 2 m − 1 ) ( a + 2 m ) {\displaystyle {d}_{2m}={\frac {m(b-m)x}{(a+2m-1)(a+2m)}}} converges rapidly when x {\displaystyle x} 4 m {\displaystyle 4m} 4 m + 1 {\displaystyle 4m+1} B ( x ; a , b ) {\displaystyle \mathrm {B} (x;\,a,b)} 4 m + 2 {\displaystyle 4m+2} 4 m + 3 {\displaystyle 4m+3} B ( x ; a , b ) {\displaystyle \mathrm {B} (x;\,a,b)} 
For x > a + 1 a + b + 2 {\displaystyle x>{\frac {a+1}{a+b+2}}} B ( x ; a , b ) = B ( a , b ) − B ( 1 − x ; b , a ) {\displaystyle \mathrm {B} (x;\,a,b)=\mathrm {B} (a,b)-\mathrm {B} (1-x;\,b,a)}  [ 8]  
Multivariate beta function The beta function can be extended to a function with more than two arguments:
B ( α 1 , α 2 , … α n ) = Γ ( α 1 ) Γ ( α 2 ) ⋯ Γ ( α n ) Γ ( α 1 + α 2 + ⋯ + α n ) . {\displaystyle \mathrm {B} (\alpha _{1},\alpha _{2},\ldots \alpha _{n})={\frac {\Gamma (\alpha _{1})\,\Gamma (\alpha _{2})\cdots \Gamma (\alpha _{n})}{\Gamma (\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n})}}.} This multivariate beta function is used in the definition of the Dirichlet distribution .  Its relationship to the beta function is analogous to the relationship between multinomial coefficients  and binomial coefficients. For example, it satisfies a similar version of Pascal's identity:
B ( α 1 , α 2 , … α n ) = B ( α 1 + 1 , α 2 , … α n ) + B ( α 1 , α 2 + 1 , … α n ) + ⋯ + B ( α 1 , α 2 , … α n + 1 ) . {\displaystyle \mathrm {B} (\alpha _{1},\alpha _{2},\ldots \alpha _{n})=\mathrm {B} (\alpha _{1}+1,\alpha _{2},\ldots \alpha _{n})+\mathrm {B} (\alpha _{1},\alpha _{2}+1,\ldots \alpha _{n})+\cdots +\mathrm {B} (\alpha _{1},\alpha _{2},\ldots \alpha _{n}+1).} Software implementation Even if unavailable directly, the complete and incomplete beta function values can be calculated using functions commonly included in spreadsheet  or computer algebra systems . 
In Microsoft Excel , for example, the complete beta function can be computed with the  GammaLn   function (or special.gammaln in Python's  SciPy  package):
Value = Exp(GammaLn(a) + GammaLn(b) − GammaLn(a + b))This result follows from the properties listed above .
The incomplete beta function cannot be directly computed using such relations and other methods must be used. In GNU Octave , it is computed using a continued fraction  expansion.
The incomplete beta function has existing implementation in common languages. For instance, betainc (incomplete beta function) in MATLAB  and GNU Octave , pbeta (probability of beta distribution) in R  and betainc in SymPy . In SciPy , special.betainc computes the regularized incomplete beta function —which is, in fact, the cumulative beta distribution. To get the actual incomplete beta function, one can multiply the result of special.betainc by the result returned by the corresponding beta function. In Mathematica , Beta[x, a, b] and BetaRegularized[x, a, b] give B ( x ; a , b ) {\displaystyle \mathrm {B} (x;\,a,b)} I x ( a , b ) {\displaystyle I_{x}(a,b)} 
References  1  2  3   Davis, Philip J. (1972), "6. Gamma function and related functions", in Abramowitz, Milton ; Stegun, Irene A.  (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Dover Publications , p.  258, ISBN     978-0-486-61272-0   ↑   Artin, Emil, The Gamma Function (PDF) , pp.  18– 19, archived from the original  (PDF)  on 2016-11-12, retrieved 2016-11-11    ↑    Beta function  : Series representations (Formula 06.18.06.0007)   ↑   Mäklin, Tommi (2022), Probabilistic Methods for High-Resolution Metagenomics (PDF) , Series of publications A / Department of Computer Science, University of Helsinki, Helsinki: Unigrafia, p.  27, ISBN     978-951-51-8695-9 ISSN     2814-4031    ↑    "Euler's Reflection Formula - ProofWiki" , proofwiki.org , retrieved 2020-09-02    ↑   Paris, R. B. (2010), "Beta Function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),  NIST Handbook of Mathematical Functions   , Cambridge University Press, ISBN     978-0-521-19225-5 MR     2723248   .  ↑   Zelen, M.; Severo, N. C. (1972), "26. Probability functions", in Abramowitz, Milton ; Stegun, Irene A.  (eds.),  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables   , New York: Dover Publications , pp.   944 , ISBN     978-0-486-61272-0   1  2   Paris, R. B. (2010), "Incomplete beta functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),  NIST Handbook of Mathematical Functions   , Cambridge University Press, ISBN     978-0-521-19225-5 MR     2723248   .  Askey, R. A. ; Roy, R. (2010), "Beta function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.),  NIST Handbook of Mathematical Functions   , Cambridge University Press, ISBN     978-0-521-19225-5 MR     2723248   . Press, W. H.; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 6.1 Gamma Function, Beta Function, Factorials" , Numerical Recipes: The Art of Scientific Computing  (3rd  ed.), New York: Cambridge University Press, ISBN     978-0-521-88068-8 the original  on 2021-10-27, retrieved 2011-08-09   This page is based on this 
Wikipedia article  Text is available under the 
CC BY-SA 4.0  license; additional terms may apply.
Images, videos and audio are available under their respective licenses.