Beta function

Last updated
Contour plot of the beta function Beta function.svg
Contour plot of the beta function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

Contents

for complex number inputs such that .

The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta.

Properties

The beta function is symmetric, meaning that for all inputs and . [1]

A key property of the beta function is its close relationship to the gamma function: [1]

A proof is given below in § Relationship to the gamma function.

The beta function is also closely related to binomial coefficients. When m (or n, by symmetry) is a positive integer, it follows from the definition of the gamma function Γ that [1]

Relationship to the gamma function

To derive this relation, write the product of two factorials as integrals. Since they are integrals in two separate variables, we can combine then into an iterated integral:

Changing variables by u = st and v = s(1 − t), because u + v = s and u / (u+v) = t, we have that the limits of integrations for s are 0 to ∞ and the limits of integration for t are 0 to 1. Thus produces

Dividing both sides by gives the desired result.

The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking

one has:

See The Gamma Function, page 18–19 [2] for a derivation of this relation.

Differentiation of the beta function

We have

where denotes the digamma function.

Approximation

Stirling's approximation gives the asymptotic formula

for large x and large y.

If on the other hand x is large and y is fixed, then

Other identities and formulas

The integral defining the beta function may be rewritten in a variety of ways, including the following:

where in the second-to-last identity n is any positive real number. One may move from the first integral to the second one by substituting .

For values we have:

The beta function can be written as an infinite sum [3]

If and are equal to a number we get:

(where is the rising factorial)

and as an infinite product

The beta function satisfies several identities analogous to corresponding identities for binomial coefficients, including a version of Pascal's identity

and a simple recurrence on one coordinate:

[4]

The positive integer values of the beta function are also the partial derivatives of a 2D function: for all nonnegative integers and ,

where

The Pascal-like identity above implies that this function is a solution to the first-order partial differential equation

For , the beta function may be written in terms of a convolution involving the truncated power function :

Evaluations at particular points may simplify significantly; for example,

and

[5]

By taking in this last formula, it follows that . Generalizing this into a bivariate identity for a product of beta functions leads to:

Euler's integral for the beta function may be converted into an integral over the Pochhammer contour C as

This Pochhammer contour integral converges for all values of α and β and so gives the analytic continuation of the beta function.

Just as the gamma function for integers describes factorials, the beta function can define a binomial coefficient after adjusting indices:

Moreover, for integer n, Β can be factored to give a closed form interpolation function for continuous values of k:

Reciprocal beta function

The reciprocal beta function is the function about the form

Interestingly, their integral representations closely relate as the definite integral of trigonometric functions with product of its power and multiple-angle: [6]

Incomplete beta function

The incomplete beta function, a generalization of the beta function, is defined as [7] [8]

For x = 1, the incomplete beta function coincides with the complete beta function. The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.

By the substitution and , we show that

The regularized incomplete beta function (or regularized beta function for short) is defined in terms of the incomplete beta function and the complete beta function:

The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n:

Properties

Continued fraction expansion

The continued fraction expansion

with odd and even coefficients respectively

converges rapidly when is not close to 1. The and convergents are less than , while the and convergents are greater than .

For , the function may be evaluated more efficiently using . [8]

Multivariate beta function

The beta function can be extended to a function with more than two arguments:

This multivariate beta function is used in the definition of the Dirichlet distribution. Its relationship to the beta function is analogous to the relationship between multinomial coefficients and binomial coefficients. For example, it satisfies a similar version of Pascal's identity:

Applications

The beta function is useful in computing and representing the scattering amplitude for Regge trajectories. Furthermore, it was the first known scattering amplitude in string theory, first conjectured by Gabriele Veneziano. It also occurs in the theory of the preferential attachment process, a type of stochastic urn process. The beta function is also important in statistics, e.g. for the beta distribution and beta prime distribution. As briefly alluded to previously, the beta function is closely tied with the gamma function and plays an important role in calculus.

Software implementation

Even if unavailable directly, the complete and incomplete beta function values can be calculated using functions commonly included in spreadsheet or computer algebra systems.

In Microsoft Excel, for example, the complete beta function can be computed with the GammaLn function (or special.gammaln in Python's SciPy package):

Value = Exp(GammaLn(a) + GammaLn(b) − GammaLn(a + b))

This result follows from the properties listed above.

The incomplete beta function cannot be directly computed using such relations and other methods must be used. In GNU Octave, it is computed using a continued fraction expansion.

The incomplete beta function has existing implementation in common languages. For instance, betainc (incomplete beta function) in MATLAB and GNU Octave, pbeta (probability of beta distribution) in R and betainc in SymPy. In SciPy, special.betainc computes the regularized incomplete beta function—which is, in fact, the cumulative beta distribution. To get the actual incomplete beta function, one can multiply the result of special.betainc by the result returned by the corresponding beta function. In Mathematica, Beta[x, a, b] and BetaRegularized[x, a, b] give and , respectively.

See also

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

von Mises distribution Probability distribution on the circle

In probability theory and directional statistics, the von Mises distribution is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for circular data when the real and imaginary parts of the first circular moment are specified. The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.

<span class="mw-page-title-main">Yield surface</span> Geometric representation of material yield

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Wrapped Cauchy distribution</span> Wrapped probability distribution

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

<span class="mw-page-title-main">Jacobi polynomials</span> Polynomial sequence

In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.

References

  1. 1 2 3 Davis, Philip J. (1972), "6. Gamma function and related functions", in Abramowitz, Milton; Stegun, Irene A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, p. 258, ISBN   978-0-486-61272-0 . Specifically, see 6.2 Beta Function.
  2. Artin, Emil, The Gamma Function (PDF), pp. 18–19, archived from the original (PDF) on 2016-11-12, retrieved 2016-11-11
  3. Beta function : Series representations (Formula 06.18.06.0007)
  4. Mäklin, Tommi (2022), Probabilistic Methods for High-Resolution Metagenomics (PDF), Series of publications A / Department of Computer Science, University of Helsinki, Helsinki: Unigrafia, p. 27, ISBN   978-951-51-8695-9, ISSN   2814-4031
  5. "Euler's Reflection Formula - ProofWiki", proofwiki.org, retrieved 2020-09-02
  6. Paris, R. B. (2010), "Beta Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN   978-0-521-19225-5, MR   2723248 .
  7. Zelen, M.; Severo, N. C. (1972), "26. Probability functions", in Abramowitz, Milton; Stegun, Irene A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , New York: Dover Publications, pp.  944, ISBN   978-0-486-61272-0
  8. 1 2 Paris, R. B. (2010), "Incomplete beta functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN   978-0-521-19225-5, MR   2723248 .