In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
for complex number inputs such that .
The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta.
The beta function is symmetric, meaning that for all inputs and . [1]
A key property of the beta function is its close relationship to the gamma function: [1]
A proof is given below in § Relationship to the gamma function.
The beta function is also closely related to binomial coefficients. When m (or n, by symmetry) is a positive integer, it follows from the definition of the gamma function Γ that [1]
A simple derivation of the relation can be found in Emil Artin's book The Gamma Function, page 18–19. [2] To derive this relation, write the product of two factorials as integrals. Since they are integrals in two separate variables, we can combine then into an iterated integral:
Changing variables by u = st and v = s(1 − t), because u + v = s and u / (u+v) = t, we have that the limits of integrations for s are 0 to ∞ and the limits of integration for t are 0 to 1. Thus produces
Dividing both sides by gives the desired result.
The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking
one has:
We have
where denotes the digamma function.
Stirling's approximation gives the asymptotic formula
for large x and large y.
If on the other hand x is large and y is fixed, then
The integral defining the beta function may be rewritten in a variety of ways, including the following:
where in the second-to-last identity n is any positive real number. One may move from the first integral to the second one by substituting .
The beta function can be written as an infinite sum [3]
and as an infinite product
The beta function satisfies several identities analogous to corresponding identities for binomial coefficients, including a version of Pascal's identity
and a simple recurrence on one coordinate:
The positive integer values of the beta function are also the partial derivatives of a 2D function: for all nonnegative integers and ,
where
The Pascal-like identity above implies that this function is a solution to the first-order partial differential equation
For , the beta function may be written in terms of a convolution involving the truncated power function :
Evaluations at particular points may simplify significantly; for example,
and
By taking in this last formula, it follows that . Generalizing this into a bivariate identity for a product of beta functions leads to:
Euler's integral for the beta function may be converted into an integral over the Pochhammer contour C as
This Pochhammer contour integral converges for all values of α and β and so gives the analytic continuation of the beta function.
Just as the gamma function for integers describes factorials, the beta function can define a binomial coefficient after adjusting indices:
Moreover, for integer n, Β can be factored to give a closed form interpolation function for continuous values of k:
The reciprocal beta function is the function about the form
Interestingly, their integral representations closely relate as the definite integral of trigonometric functions with product of its power and multiple-angle: [6]
The incomplete beta function, a generalization of the beta function, is defined as [7] [8]
For x = 1, the incomplete beta function coincides with the complete beta function. The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.
By the substitution and , we show that
The regularized incomplete beta function (or regularized beta function for short) is defined in terms of the incomplete beta function and the complete beta function:
The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n:
The continued fraction expansion
with odd and even coefficients respectively
converges rapidly when is not close to 1. The and convergents are less than , while the and convergents are greater than .
For , the function may be evaluated more efficiently using . [8]
The beta function can be extended to a function with more than two arguments:
This multivariate beta function is used in the definition of the Dirichlet distribution. Its relationship to the beta function is analogous to the relationship between multinomial coefficients and binomial coefficients. For example, it satisfies a similar version of Pascal's identity:
The beta function is useful in computing and representing the scattering amplitude for Regge trajectories. Furthermore, it was the first known scattering amplitude in string theory, first conjectured by Gabriele Veneziano. It also occurs in the theory of the preferential attachment process, a type of stochastic urn process. The beta function is also important in statistics, e.g. for the beta distribution and beta prime distribution. As briefly alluded to previously, the beta function is closely tied with the gamma function and plays an important role in calculus.
Even if unavailable directly, the complete and incomplete beta function values can be calculated using functions commonly included in spreadsheet or computer algebra systems.
In Microsoft Excel, for example, the complete beta function can be computed with the GammaLn
function (or special.gammaln
in Python's SciPy package):
Value = Exp(GammaLn(a) + GammaLn(b) − GammaLn(a + b))
This result follows from the properties listed above.
The incomplete beta function cannot be directly computed using such relations and other methods must be used. In GNU Octave, it is computed using a continued fraction expansion.
The incomplete beta function has existing implementation in common languages. For instance, betainc
(incomplete beta function) in MATLAB and GNU Octave, pbeta
(probability of beta distribution) in R, or special.betainc
in SciPy compute the regularized incomplete beta function—which is, in fact, the cumulative beta distribution—and so, to get the actual incomplete beta function, one must multiply the result of betainc
by the result returned by the corresponding beta
function. In Mathematica, Beta[x, a, b]
and BetaRegularized[x, a, b]
give and , respectively.
This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2010) |
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.
In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be a non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.
In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.
In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.
In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis, while an axial stretching causes the vorticity to increase. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the three effects are in balance.
In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.