Cumulative distribution function

Last updated
Cumulative distribution function for the exponential distribution Exponential distribution cdf.svg
Cumulative distribution function for the exponential distribution
Cumulative distribution function for the normal distribution Normal Distribution CDF.svg
Cumulative distribution function for the normal distribution

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to . [1]

Contents

Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by a right-continuous monotone increasing function (a càdlàg function) satisfying and .

In the case of a scalar continuous distribution, it gives the area under the probability density function from negative infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.

Definition

The cumulative distribution function of a real-valued random variable is the function given by [2] :p. 77

 

 

 

 

(Eq.1)

where the right-hand side represents the probability that the random variable takes on a value less than or equal to .

The probability that lies in the semi-closed interval , where , is therefore [2] :p. 84

 

 

 

 

(Eq.2)

In the definition above, the "less than or equal to" sign, "≤", is a convention, not a universally used one (e.g. Hungarian literature uses "<"), but the distinction is important for discrete distributions. The proper use of tables of the binomial and Poisson distributions depends upon this convention. Moreover, important formulas like Paul Lévy's inversion formula for the characteristic function also rely on the "less than or equal" formulation.

If treating several random variables etc. the corresponding letters are used as subscripts while, if treating only one, the subscript is usually omitted. It is conventional to use a capital for a cumulative distribution function, in contrast to the lower-case used for probability density functions and probability mass functions. This applies when discussing general distributions: some specific distributions have their own conventional notation, for example the normal distribution uses and instead of and , respectively.

The probability density function of a continuous random variable can be determined from the cumulative distribution function by differentiating [3] using the Fundamental Theorem of Calculus; i.e. given ,

as long as the derivative exists.

The CDF of a continuous random variable can be expressed as the integral of its probability density function as follows: [2] :p. 86

In the case of a random variable which has distribution having a discrete component at a value ,

If is continuous at , this equals zero and there is no discrete component at .

Properties

From top to bottom, the cumulative distribution function of a discrete probability distribution, continuous probability distribution, and a distribution which has both a continuous part and a discrete part. Discrete probability distribution illustration.svg
From top to bottom, the cumulative distribution function of a discrete probability distribution, continuous probability distribution, and a distribution which has both a continuous part and a discrete part.
Example of a cumulative distribution function with a countably infinite set of discontinuities. Discrete probability distribution with a countable set of discontinuities.svg
Example of a cumulative distribution function with a countably infinite set of discontinuities.

Every cumulative distribution function is non-decreasing [2] :p. 78 and right-continuous, [2] :p. 79 which makes it a càdlàg function. Furthermore,

Every function with these four properties is a CDF, i.e., for every such function, a random variable can be defined such that the function is the cumulative distribution function of that random variable.

If is a purely discrete random variable, then it attains values with probability , and the CDF of will be discontinuous at the points :

If the CDF of a real valued random variable is continuous, then is a continuous random variable; if furthermore is absolutely continuous, then there exists a Lebesgue-integrable function such that

for all real numbers and . The function is equal to the derivative of almost everywhere, and it is called the probability density function of the distribution of .

If has finite L1-norm, that is, the expectation of is finite, then the expectation is given by the Riemann–Stieltjes integral

and for any ,

CDF plot with two red rectangles, illustrating
x
(
1
-
F
X
(
x
)
)
<=
[?]
x
[?]
t
d
F
X
(
t
)
{\displaystyle x(1-F_{X}(x))\leq \int _{x}^{\infty }tdF_{X}(t)}
and
x
F
X
(
-
x
)
<=
[?]
-
[?]
-
x
(
-
t
)
d
F
X
(
t
)
{\displaystyle xF_{X}(-x)\leq \int _{-\infty }^{-x}(-t)dF_{X}(t)}
. CDF plot with two red rectangles, illustrating (-x)F(x) and x(1-F(x)).png
CDF plot with two red rectangles, illustrating and .

as shown in the diagram. In particular, we have

Examples

As an example, suppose is uniformly distributed on the unit interval .

Then the CDF of is given by

Suppose instead that takes only the discrete values 0 and 1, with equal probability.

Then the CDF of is given by

Suppose is exponential distributed. Then the CDF of is given by

Here λ > 0 is the parameter of the distribution, often called the rate parameter.

Suppose is normal distributed. Then the CDF of is given by

Here the parameter is the mean or expectation of the distribution; and is its standard deviation.

A table of the CDF of the standard normal distribution is often used in statistical applications, where it is named the standard normal table, the unit normal table, or the Z table.

Suppose is binomial distributed. Then the CDF of is given by

Here is the probability of success and the function denotes the discrete probability distribution of the number of successes in a sequence of independent experiments, and is the "floor" under , i.e. the greatest integer less than or equal to .

Derived functions

Complementary cumulative distribution function (tail distribution)

Sometimes, it is useful to study the opposite question and ask how often the random variable is above a particular level. This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as

This has applications in statistical hypothesis testing, for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed. Thus, provided that the test statistic, T, has a continuous distribution, the one-sided p-value is simply given by the ccdf: for an observed value of the test statistic

In survival analysis, is called the survival function and denoted , while the term reliability function is common in engineering.

Properties

Folded cumulative distribution

Example of the folded cumulative distribution for a normal distribution function with an expected value of 0 and a standard deviation of 1. Folded-cumulative-distribution-function.svg
Example of the folded cumulative distribution for a normal distribution function with an expected value of 0 and a standard deviation of 1.

While the plot of a cumulative distribution often has an S-like shape, an alternative illustration is the folded cumulative distribution or mountain plot, which folds the top half of the graph over, [5] [6] that is

where denotes the indicator function and the second summand is the survivor function, thus using two scales, one for the upslope and another for the downslope. This form of illustration emphasises the median, dispersion (specifically, the mean absolute deviation from the median [7] ) and skewness of the distribution or of the empirical results.

Inverse distribution function (quantile function)

If the CDF F is strictly increasing and continuous then is the unique real number such that . This defines the inverse distribution function or quantile function.

Some distributions do not have a unique inverse (for example if for all , causing to be constant). In this case, one may use the generalized inverse distribution function, which is defined as

Some useful properties of the inverse cdf (which are also preserved in the definition of the generalized inverse distribution function) are:

  1. is nondecreasing [8]
  2. if and only if
  3. If has a distribution then is distributed as . This is used in random number generation using the inverse transform sampling-method.
  4. If is a collection of independent -distributed random variables defined on the same sample space, then there exist random variables such that is distributed as and with probability 1 for all .[ citation needed ]

The inverse of the cdf can be used to translate results obtained for the uniform distribution to other distributions.

Empirical distribution function

The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function. [9]

Multivariate case

Definition for two random variables

When dealing simultaneously with more than one random variable the joint cumulative distribution function can also be defined. For example, for a pair of random variables , the joint CDF is given by [2] :p. 89

 

 

 

 

(Eq.3)

where the right-hand side represents the probability that the random variable takes on a value less than or equal to and that takes on a value less than or equal to .

Example of joint cumulative distribution function:

For two continuous variables X and Y:

For two discrete random variables, it is beneficial to generate a table of probabilities and address the cumulative probability for each potential range of X and Y, and here is the example: [10]

given the joint probability mass function in tabular form, determine the joint cumulative distribution function.

Y = 2Y = 4Y = 6Y = 8
X = 100.100.1
X = 3000.20
X = 50.3000.15
X = 7000.150

Solution: using the given table of probabilities for each potential range of X and Y, the joint cumulative distribution function may be constructed in tabular form:

Y < 2Y ≤ 2Y ≤ 4Y ≤ 6Y ≤ 8
X < 100000
X ≤ 1000.10.10.2
X ≤ 3000.10.30.4
X ≤ 500.30.40.60.85
X ≤ 700.30.40.751

Definition for more than two random variables

For random variables , the joint CDF is given by

 

 

 

 

(Eq.4)

Interpreting the random variables as a random vector yields a shorter notation:

Properties

Every multivariate CDF is:

  1. Monotonically non-decreasing for each of its variables,
  2. Right-continuous in each of its variables,

Not every function satisfying the above four properties is a multivariate CDF, unlike in the single dimension case. For example, let for or or and let otherwise. It is easy to see that the above conditions are met, and yet is not a CDF since if it was, then as explained below.

The probability that a point belongs to a hyperrectangle is analogous to the 1-dimensional case: [11]

Complex case

Complex random variable

The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form make no sense. However expressions of the form make sense. Therefore, we define the cumulative distribution of a complex random variables via the joint distribution of their real and imaginary parts:

Complex random vector

Generalization of Eq.4 yields

as definition for the CDS of a complex random vector .

Use in statistical analysis

The concept of the cumulative distribution function makes an explicit appearance in statistical analysis in two (similar) ways. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The empirical distribution function is a formal direct estimate of the cumulative distribution function for which simple statistical properties can be derived and which can form the basis of various statistical hypothesis tests. Such tests can assess whether there is evidence against a sample of data having arisen from a given distribution, or evidence against two samples of data having arisen from the same (unknown) population distribution.

Kolmogorov–Smirnov and Kuiper's tests

The Kolmogorov–Smirnov test is based on cumulative distribution functions and can be used to test to see whether two empirical distributions are different or whether an empirical distribution is different from an ideal distribution. The closely related Kuiper's test is useful if the domain of the distribution is cyclic as in day of the week. For instance Kuiper's test might be used to see if the number of tornadoes varies during the year or if sales of a product vary by day of the week or day of the month.

See also

Related Research Articles

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

<span class="mw-page-title-main">Expected value</span> Average value of a random variable

In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as its mathematical definition is not actually random nor a variable, but rather it is a function from possible outcomes in a sample space to a measurable space, often to the real numbers.

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Probability density function</span> Function whose integral over a region describes the probability of an event occurring in that region

In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0, the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.

<span class="mw-page-title-main">Chi-squared distribution</span> Probability distribution and special case of gamma distribution

In probability theory and statistics, the chi-squared distribution with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals. This distribution is sometimes called the central chi-squared distribution, a special case of the more general noncentral chi-squared distribution.

<span class="mw-page-title-main">Order statistic</span> Kth smallest value in a statistical sample

In statistics, the kth order statistic of a statistical sample is equal to its kth-smallest value. Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference.

In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.

In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables.

<span class="mw-page-title-main">Joint probability distribution</span> Type of probability distribution

Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables. The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables and the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).

Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

<span class="mw-page-title-main">Empirical distribution function</span> Distribution function associated with the empirical measure of a sample

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

Differential entropy is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In probability theory, the probability integral transform relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

The convolution/sum of probability distributions arises in probability theory and statistics as the operation in terms of probability distributions that corresponds to the addition of independent random variables and, by extension, to forming linear combinations of random variables. The operation here is a special case of convolution in the context of probability distributions.

References

  1. Deisenroth, Marc Peter; Faisal, A. Aldo; Ong, Cheng Soon (2020). Mathematics for Machine Learning. Cambridge University Press. p. 181. ISBN   9781108455145.
  2. 1 2 3 4 5 6 Park, Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN   978-3-319-68074-3.
  3. Montgomery, Douglas C.; Runger, George C. (2003). Applied Statistics and Probability for Engineers (PDF). John Wiley & Sons, Inc. p. 104. ISBN   0-471-20454-4. Archived (PDF) from the original on 2012-07-30.
  4. Zwillinger, Daniel; Kokoska, Stephen (2010). CRC Standard Probability and Statistics Tables and Formulae. CRC Press. p. 49. ISBN   978-1-58488-059-2.
  5. Gentle, J.E. (2009). Computational Statistics. Springer. ISBN   978-0-387-98145-1 . Retrieved 2010-08-06.[ page needed ]
  6. Monti, K. L. (1995). "Folded Empirical Distribution Function Curves (Mountain Plots)". The American Statistician. 49 (4): 342–345. doi:10.2307/2684570. JSTOR   2684570.
  7. Xue, J. H.; Titterington, D. M. (2011). "The p-folded cumulative distribution function and the mean absolute deviation from the p-quantile" (PDF). Statistics & Probability Letters. 81 (8): 1179–1182. doi:10.1016/j.spl.2011.03.014.
  8. Chan, Stanley H. (2021). Introduction to Probability for Data Science. Michigan Publishing. p. 18. ISBN   978-1-60785-746-4.
  9. Hesse, C. (1990). "Rates of convergence for the empirical distribution function and the empirical characteristic function of a broad class of linear processes". Journal of Multivariate Analysis. 35 (2): 186–202. doi:10.1016/0047-259X(90)90024-C.
  10. "Joint Cumulative Distribution Function (CDF)". math.info. Retrieved 2019-12-11.
  11. "Archived copy" (PDF). www.math.wustl.edu. Archived from the original (PDF) on 22 February 2016. Retrieved 13 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  12. Sun, Jingchao; Kong, Maiying; Pal, Subhadip (22 June 2021). "The Modified-Half-Normal distribution: Properties and an efficient sampling scheme". Communications in Statistics - Theory and Methods. 52 (5): 1591–1613. doi:10.1080/03610926.2021.1934700. ISSN   0361-0926. S2CID   237919587.