Central moment

Last updated

In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized. Central moments are used in preference to ordinary moments, computed in terms of deviations from the mean instead of from zero, because the higher-order central moments relate only to the spread and shape of the distribution, rather than also to its location.

Contents

Sets of central moments can be defined for both univariate and multivariate distributions.

Univariate moments

The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μn := E[(X  E[X])n], where E is the expectation operator. For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is

[1]

For random variables that have no mean, such as the Cauchy distribution, central moments are not defined.

The first few central moments have intuitive interpretations:

Properties

For all n, the nth central moment is homogeneous of degree n:

Only for n such that n equals 1, 2, or 3 do we have an additivity property for random variables X and Y that are independent:

provided n{1, 2, 3}.

A related functional that shares the translation-invariance and homogeneity properties with the nth central moment, but continues to have this additivity property even when n  4 is the nth cumulant κn(X). For n = 1, the nth cumulant is just the expected value; for n = either 2 or 3, the nth cumulant is just the nth central moment; for n  4, the nth cumulant is an nth-degree monic polynomial in the first n moments (about zero), and is also a (simpler) nth-degree polynomial in the first n central moments.

Relation to moments about the origin

Sometimes it is convenient to convert moments about the origin to moments about the mean. The general equation for converting the nth-order moment about the origin to the moment about the mean is

where μ is the mean of the distribution, and the moment about the origin is given by

For the cases n = 2, 3, 4 — which are of most interest because of the relations to variance, skewness, and kurtosis, respectively — this formula becomes (noting that and ):

which is commonly referred to as

... and so on, [2] following Pascal's triangle, i.e.

because

The following sum is a stochastic variable having a compound distribution

where the are mutually independent random variables sharing the same common distribution and a random integer variable independent of the with its own distribution. The moments of are obtained as

where is defined as zero for .

Symmetric distributions

In distributions that are symmetric about their means (unaffected by being reflected about the mean), all odd central moments equal zero whenever they exist, because in the formula for the nth moment, each term involving a value of X less than the mean by a certain amount exactly cancels out the term involving a value of X greater than the mean by the same amount.

Multivariate moments

For a continuous bivariate probability distribution with probability density function f(x,y) the (j,k) moment about the mean μ = (μX, μY) is

Central moment of complex random variables

The nth central moment for a complex random variable X is defined as [3]

The absolute nth central moment of X is defined as

The 2nd-order central moment β2 is called the variance of X whereas the 2nd-order central moment α2 is the pseudo-variance of X.

See also

Related Research Articles

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

In probability theory and statistics, kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosis describes a particular aspect of a probability distribution. There are different ways to quantify kurtosis for a theoretical distribution, and there are corresponding ways of estimating it using a sample from a population. Different measures of kurtosis may have different interpretations.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.

In probability theory and statistics, a standardized moment of a probability distribution is a moment that is normalized, typically by a power of the standard deviation, rendering the moment scale invariant. The shape of different probability distributions can be compared using standardized moments.

In probability theory and statistics, the cumulantsκn of a probability distribution are a set of quantities that provide an alternative to the moments of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa.

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics.

In probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution.

<span class="mw-page-title-main">Skellam distribution</span>

The Skellam distribution is the discrete probability distribution of the difference of two statistically independent random variables and each Poisson-distributed with respective expected values and . It is useful in describing the statistics of the difference of two images with simple photon noise, as well as describing the point spread distribution in sports where all scored points are equal, such as baseball, hockey and soccer.

In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis.

<span class="mw-page-title-main">Noncentral chi-squared distribution</span> Noncentral generalization of the chi-squared distribution

In probability theory and statistics, the noncentral chi-squared distribution is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is a chi-squared distribution; important examples of such tests are the likelihood-ratio tests.

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

<span class="mw-page-title-main">Inverse Gaussian distribution</span> Family of continuous probability distributions

In probability theory, the inverse Gaussian distribution is a two-parameter family of continuous probability distributions with support on (0,∞).

In probability and statistics, a natural exponential family (NEF) is a class of probability distributions that is a special case of an exponential family (EF).

<span class="mw-page-title-main">Hermite distribution</span> Statistical probability Distribution for discrete event counts

In probability theory and statistics, the Hermite distribution, named after Charles Hermite, is a discrete probability distribution used to model count data with more than one parameter. This distribution is flexible in terms of its ability to allow a moderate over-dispersion in the data.

The Borel distribution is a discrete probability distribution, arising in contexts including branching processes and queueing theory. It is named after the French mathematician Émile Borel.

<span class="mw-page-title-main">Neyman Type A distribution</span> Compound Poisson-family discrete probability distribution

In statistics and probability, the Neyman Type A distribution is a discrete probability distribution from the family of Compound Poisson distribution. First of all, to easily understand this distribution we will demonstrate it with the following example explained in Univariate Discret Distributions; we have a statistical model of the distribution of larvae in a unit area of field by assuming that the variation in the number of clusters of eggs per unit area could be represented by a Poisson distribution with parameter , while the number of larvae developing per cluster of eggs are assumed to have independent Poisson distribution all with the same parameter . If we want to know how many larvae there are, we define a random variable Y as the sum of the number of larvae hatched in each group. Therefore, Y = X1 + X2 + ... Xj, where X1,...,Xj are independent Poisson variables with parameter and .

References

  1. Grimmett, Geoffrey; Stirzaker, David (2009). Probability and Random Processes. Oxford, England: Oxford University Press. ISBN   978-0-19-857222-0.
  2. "Central Moment".
  3. Eriksson, Jan; Ollila, Esa; Koivunen, Visa (2009). "Statistics for complex random variables revisited". 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 3565–3568. doi:10.1109/ICASSP.2009.4960396. ISBN   978-1-4244-2353-8. S2CID   17433817.