Part of a series on statistics |
Probability theory |
---|
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [2] but instead is a mathematical function in which
Informally, randomness typically represents some fundamental element of chance, such as in the roll of a die; it may also represent uncertainty, such as measurement error. [1] However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup.
In the formal mathematical language of measure theory, a random variable is defined as a measurable function from a probability measure space (called the sample space) to a measurable space. This allows consideration of the pushforward measure, which is called the distribution of the random variable; the distribution is thus a probability measure on the set of all possible values of the random variable. It is possible for two random variables to have identical distributions but to differ in significant ways; for instance, they may be independent.
It is common to consider the special cases of discrete random variables and absolutely continuous random variables, corresponding to whether a random variable is valued in a countable subset or in an interval of real numbers. There are other important possibilities, especially in the theory of stochastic processes, wherein it is natural to consider random sequences or random functions. Sometimes a random variable is taken to be automatically valued in the real numbers, with more general random quantities instead being called random elements .
According to George Mackey, Pafnuty Chebyshev was the first person "to think systematically in terms of random variables". [3]
A random variable is a measurable function from a sample space as a set of possible outcomes to a measurable space . The technical axiomatic definition requires the sample space to be a sample space of a probability triple (see the measure-theoretic definition). A random variable is often denoted by capital Roman letters such as . [4]
The probability that takes on a value in a measurable set is written as
In many cases, is real-valued, i.e. . In some contexts, the term random element (see extensions) is used to denote a random variable not of this form.
When the image (or range) of is finitely or infinitely countable, the random variable is called a discrete random variable [5] : 399 and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of . If the image is uncountably infinite (usually an interval) then is called a continuous random variable. [6] [7] In the special case that it is absolutely continuous, its distribution can be described by a probability density function, which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous. [8]
Any random variable can be described by its cumulative distribution function, which describes the probability that the random variable will be less than or equal to a certain value.
The term "random variable" in statistics is traditionally limited to the real-valued case (). In this case, the structure of the real numbers makes it possible to define quantities such as the expected value and variance of a random variable, its cumulative distribution function, and the moments of its distribution.
However, the definition above is valid for any measurable space of values. Thus one can consider random elements of other sets , such as random Boolean values, categorical values, complex numbers, vectors, matrices, sequences, trees, sets, shapes, manifolds, and functions. One may then specifically refer to a random variable of type , or an -valued random variable.
This more general concept of a random element is particularly useful in disciplines such as graph theory, machine learning, natural language processing, and other fields in discrete mathematics and computer science, where one is often interested in modeling the random variation of non-numerical data structures. In some cases, it is nonetheless convenient to represent each element of , using one or more real numbers. In this case, a random element may optionally be represented as a vector of real-valued random variables (all defined on the same underlying probability space , which allows the different random variables to covary). For example:
If a random variable defined on the probability space is given, we can ask questions like "How likely is it that the value of is equal to 2?". This is the same as the probability of the event which is often written as or for short.
Recording all these probabilities of outputs of a random variable yields the probability distribution of . The probability distribution "forgets" about the particular probability space used to define and only records the probabilities of various output values of . Such a probability distribution, if is real-valued, can always be captured by its cumulative distribution function
and sometimes also using a probability density function, . In measure-theoretic terms, we use the random variable to "push-forward" the measure on to a measure on . The measure is called the "(probability) distribution of " or the "law of ". [9] The density , the Radon–Nikodym derivative of with respect to some reference measure on (often, this reference measure is the Lebesgue measure in the case of continuous random variables, or the counting measure in the case of discrete random variables). The underlying probability space is a technical device used to guarantee the existence of random variables, sometimes to construct them, and to define notions such as correlation and dependence or independence based on a joint distribution of two or more random variables on the same probability space. In practice, one often disposes of the space altogether and just puts a measure on that assigns measure 1 to the whole real line, i.e., one works with probability distributions instead of random variables. See the article on quantile functions for fuller development.
Consider an experiment where a person is chosen at random. An example of a random variable may be the person's height. Mathematically, the random variable is interpreted as a function which maps the person to their height. Associated with the random variable is a probability distribution that allows the computation of the probability that the height is in any subset of possible values, such as the probability that the height is between 180 and 190 cm, or the probability that the height is either less than 150 or more than 200 cm.
Another random variable may be the person's number of children; this is a discrete random variable with non-negative integer values. It allows the computation of probabilities for individual integer values – the probability mass function (PMF) – or for sets of values, including infinite sets. For example, the event of interest may be "an even number of children". For both finite and infinite event sets, their probabilities can be found by adding up the PMFs of the elements; that is, the probability of an even number of children is the infinite sum .
In examples such as these, the sample space is often suppressed, since it is mathematically hard to describe, and the possible values of the random variables are then treated as a sample space. But when two random variables are measured on the same sample space of outcomes, such as the height and number of children being computed on the same random persons, it is easier to track their relationship if it is acknowledged that both height and number of children come from the same random person, for example so that questions of whether such random variables are correlated or not can be posed.
If are countable sets of real numbers, and , then is a discrete distribution function. Here for , for . Taking for instance an enumeration of all rational numbers as , one gets a discrete function that is not necessarily a step function (piecewise constant).
The possible outcomes for one coin toss can be described by the sample space . We can introduce a real-valued random variable that models a $1 payoff for a successful bet on heads as follows:
If the coin is a fair coin, Y has a probability mass function given by:
A random variable can also be used to describe the process of rolling dice and the possible outcomes. The most obvious representation for the two-dice case is to take the set of pairs of numbers n1 and n2 from {1, 2, 3, 4, 5, 6} (representing the numbers on the two dice) as the sample space. The total number rolled (the sum of the numbers in each pair) is then a random variable X given by the function that maps the pair to the sum: and (if the dice are fair) has a probability mass function fX given by:
Formally, a continuous random variable is a random variable whose cumulative distribution function is continuous everywhere. [10] There are no "gaps", which would correspond to numbers which have a finite probability of occurring. Instead, continuous random variables almost never take an exact prescribed value c (formally, ) but there is a positive probability that its value will lie in particular intervals which can be arbitrarily small. Continuous random variables usually admit probability density functions (PDF), which characterize their CDF and probability measures; such distributions are also called absolutely continuous; but some continuous distributions are singular, or mixes of an absolutely continuous part and a singular part.
An example of a continuous random variable would be one based on a spinner that can choose a horizontal direction. Then the values taken by the random variable are directions. We could represent these directions by North, West, East, South, Southeast, etc. However, it is commonly more convenient to map the sample space to a random variable which takes values which are real numbers. This can be done, for example, by mapping a direction to a bearing in degrees clockwise from North. The random variable then takes values which are real numbers from the interval [0, 360), with all parts of the range being "equally likely". In this case, X = the angle spun. Any real number has probability zero of being selected, but a positive probability can be assigned to any range of values. For example, the probability of choosing a number in [0, 180] is 1⁄2. Instead of speaking of a probability mass function, we say that the probability density of X is 1/360. The probability of a subset of [0, 360) can be calculated by multiplying the measure of the set by 1/360. In general, the probability of a set for a given continuous random variable can be calculated by integrating the density over the given set.
More formally, given any interval , a random variable is called a "continuous uniform random variable" (CURV) if the probability that it takes a value in a subinterval depends only on the length of the subinterval. This implies that the probability of falling in any subinterval is proportional to the length of the subinterval, that is, if a ≤ c ≤ d ≤ b, one has
where the last equality results from the unitarity axiom of probability. The probability density function of a CURV is given by the indicator function of its interval of support normalized by the interval's length: Of particular interest is the uniform distribution on the unit interval . Samples of any desired probability distribution can be generated by calculating the quantile function of on a randomly-generated number distributed uniformly on the unit interval. This exploits properties of cumulative distribution functions, which are a unifying framework for all random variables.
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]
An example of a random variable of mixed type would be based on an experiment where a coin is flipped and the spinner is spun only if the result of the coin toss is heads. If the result is tails, X = −1; otherwise X = the value of the spinner as in the preceding example. There is a probability of 1⁄2 that this random variable will have the value −1. Other ranges of values would have half the probabilities of the last example.
Most generally, every probability distribution on the real line is a mixture of discrete part, singular part, and an absolutely continuous part; see Lebesgue's decomposition theorem § Refinement. The discrete part is concentrated on a countable set, but this set may be dense (like the set of all rational numbers).
The most formal, axiomatic definition of a random variable involves measure theory. Continuous random variables are defined in terms of sets of numbers, along with functions that map such sets to probabilities. Because of various difficulties (e.g. the Banach–Tarski paradox) that arise if such sets are insufficiently constrained, it is necessary to introduce what is termed a sigma-algebra to constrain the possible sets over which probabilities can be defined. Normally, a particular such sigma-algebra is used, the Borel σ-algebra, which allows for probabilities to be defined over any sets that can be derived either directly from continuous intervals of numbers or by a finite or countably infinite number of unions and/or intersections of such intervals. [11]
The measure-theoretic definition is as follows.
Let be a probability space and a measurable space. Then an -valued random variable is a measurable function , which means that, for every subset , its preimage is -measurable; , where . [12] This definition enables us to measure any subset in the target space by looking at its preimage, which by assumption is measurable.
In more intuitive terms, a member of is a possible outcome, a member of is a measurable subset of possible outcomes, the function gives the probability of each such measurable subset, represents the set of values that the random variable can take (such as the set of real numbers), and a member of is a "well-behaved" (measurable) subset of (those for which the probability may be determined). The random variable is then a function from any outcome to a quantity, such that the outcomes leading to any useful subset of quantities for the random variable have a well-defined probability.
When is a topological space, then the most common choice for the σ-algebra is the Borel σ-algebra , which is the σ-algebra generated by the collection of all open sets in . In such case the -valued random variable is called an -valued random variable. Moreover, when the space is the real line , then such a real-valued random variable is called simply a random variable.
In this case the observation space is the set of real numbers. Recall, is the probability space. For a real observation space, the function is a real-valued random variable if
This definition is a special case of the above because the set generates the Borel σ-algebra on the set of real numbers, and it suffices to check measurability on any generating set. Here we can prove measurability on this generating set by using the fact that .
The probability distribution of a random variable is often characterised by a small number of parameters, which also have a practical interpretation. For example, it is often enough to know what its "average value" is. This is captured by the mathematical concept of expected value of a random variable, denoted , and also called the first moment. In general, is not equal to . Once the "average value" is known, one could then ask how far from this average value the values of typically are, a question that is answered by the variance and standard deviation of a random variable. can be viewed intuitively as an average obtained from an infinite population, the members of which are particular evaluations of .
Mathematically, this is known as the (generalised) problem of moments: for a given class of random variables , find a collection of functions such that the expectation values fully characterise the distribution of the random variable .
Moments can only be defined for real-valued functions of random variables (or complex-valued, etc.). If the random variable is itself real-valued, then moments of the variable itself can be taken, which are equivalent to moments of the identity function of the random variable. However, even for non-real-valued random variables, moments can be taken of real-valued functions of those variables. For example, for a categorical random variable X that can take on the nominal values "red", "blue" or "green", the real-valued function can be constructed; this uses the Iverson bracket, and has the value 1 if has the value "green", 0 otherwise. Then, the expected value and other moments of this function can be determined.
A new random variable Y can be defined by applying a real Borel measurable function to the outcomes of a real-valued random variable . That is, . The cumulative distribution function of is then
If function is invertible (i.e., exists, where is 's inverse function) and is either increasing or decreasing, then the previous relation can be extended to obtain
With the same hypotheses of invertibility of , assuming also differentiability, the relation between the probability density functions can be found by differentiating both sides of the above expression with respect to , in order to obtain [10]
If there is no invertibility of but each admits at most a countable number of roots (i.e., a finite, or countably infinite, number of such that ) then the previous relation between the probability density functions can be generalized with
where , according to the inverse function theorem. The formulas for densities do not demand to be increasing.
In the measure-theoretic, axiomatic approach to probability, if a random variable on and a Borel measurable function , then is also a random variable on , since the composition of measurable functions is also measurable. (However, this is not necessarily true if is Lebesgue measurable.[ citation needed ]) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .
Let be a real-valued, continuous random variable and let .
If , then , so
If , then
so
Suppose is a random variable with a cumulative distribution
where is a fixed parameter. Consider the random variable Then,
The last expression can be calculated in terms of the cumulative distribution of so
which is the cumulative distribution function (CDF) of an exponential distribution.
Suppose is a random variable with a standard normal distribution, whose density is
Consider the random variable We can find the density using the above formula for a change of variables:
In this case the change is not monotonic, because every value of has two corresponding values of (one positive and negative). However, because of symmetry, both halves will transform identically, i.e.,
The inverse transformation is
and its derivative is
Then,
This is a chi-squared distribution with one degree of freedom.
Suppose is a random variable with a normal distribution, whose density is
Consider the random variable We can find the density using the above formula for a change of variables:
In this case the change is not monotonic, because every value of has two corresponding values of (one positive and negative). Differently from the previous example, in this case however, there is no symmetry and we have to compute the two distinct terms:
The inverse transformation is
and its derivative is
Then,
This is a noncentral chi-squared distribution with one degree of freedom.
There are several different senses in which random variables can be considered to be equivalent. Two random variables can be equal, equal almost surely, or equal in distribution.
In increasing order of strength, the precise definition of these notions of equivalence is given below.
If the sample space is a subset of the real line, random variables X and Y are equal in distribution (denoted ) if they have the same distribution functions:
To be equal in distribution, random variables need not be defined on the same probability space. Two random variables having equal moment generating functions have the same distribution. This provides, for example, a useful method of checking equality of certain functions of independent, identically distributed (IID) random variables. However, the moment generating function exists only for distributions that have a defined Laplace transform.
Two random variables X and Y are equal almost surely (denoted ) if, and only if, the probability that they are different is zero:
For all practical purposes in probability theory, this notion of equivalence is as strong as actual equality. It is associated to the following distance:
where "ess sup" represents the essential supremum in the sense of measure theory.
Finally, the two random variables X and Y are equal if they are equal as functions on their measurable space:
This notion is typically the least useful in probability theory because in practice and in theory, the underlying measure space of the experiment is rarely explicitly characterized or even characterizable.
A significant theme in mathematical statistics consists of obtaining convergence results for certain sequences of random variables; for instance the law of large numbers and the central limit theorem.
There are various senses in which a sequence of random variables can converge to a random variable . These are explained in the article on convergence of random variables.
In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0, the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample.
In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.
In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.
The proposition in probability theory known as the law of total expectation, the law of iterated expectations (LIE), Adam's law, the tower rule, and the smoothing theorem, among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In probability theory and statistics, the conditional probability distribution is a probability distribution that describes the probability of an outcome given the occurrence of a particular event. Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.
In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions.
In mathematics, a π-system on a set is a collection of certain subsets of such that
In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.
Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random.
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X.
In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.