List of statistical tests

Last updated

Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]

Contents

Explanation of properties

List of statistical tests

Test nameScalingAssumptionsData Samples Exact Special case ofApplication conditions
One sample t-test interval normal univariate 1 No [8] Location test
Paired difference test paired 2 Location test
Unpaired t-test interval normal unpaired2 No [8] Location test Homoscedasticity [9]
Welch's t-test interval normal unpaired2 No [8] Location test
Paired t-test interval normal paired 2 No Location test
F-test interval normal 2
Z-test interval normal 2 No variance is known
Permutation test interval non-parametric unpaired≥2Yes
Kruskal-Wallis test ordinal non-parametric unpaired≥2Yessmall sample size [10]
Mann–Whitney test ordinal non-parametric unpaired2 Kruskal-Wallis test [11]
Wilcoxon signed-rank test interval non-parametric paired ≥1 Location test
Sign test ordinal non-parametric paired 2
Friedman test ordinal non-parametric paired >2 Location test
test nominal [1] non-parametric [12] No Contingency table,
sample size > ca. 60, [1]
any cell content ≥ 5, [13]
marginal totals fixed [13]
Pearson's test nominal/ordinal non-parametric No test
Median test ordinal non-parametric No Pearson's test
Multinomial test nominal non-parametric univariate 1Yes Location test
McNemar's test binary non-parametric [14] paired 2Yes Cochran's test [15]
Cochran's test binary non-parametric paired ≥2
Binomial test binary non-parametric univariate 1Yes Multinomial test
Siegel–Tukey test ordinal non-parametric unpaired2
Chow test interval parametric linear regression 2No Time series
Fisher's exact test nominal non-parametric unpaired≥2 [13] Yes Contingency table,
marginal totals fixed [13]
Barnard's exact test nominal non-parametric unpaired2Yes Contingency table
Boschloo's test nominal non-parametric unpaired2Yes Contingency table
Shapiro–Wilk test interval univariate 1 Normality test sample size between 3 and 5000 [16]
Kolmogorov–Smirnov test interval 1 Normality test distribution parameters known [16]
Shapiro-Francia test interval univariate 1 Normality test Simplification of Shapiro–Wilk test
Lilliefors test interval 1 Normality test

See also

References

  1. 1 2 3 4 5 6 7 Parab, Shraddha; Bhalerao, Supriya (2010). "Choosing statistical test". International Journal of Ayurveda Research. 1 (3): 187–191. doi: 10.4103/0974-7788.72494 . ISSN   0974-7788. PMC   2996580 . PMID   21170214.
  2. "Entscheidbaum" (in German). Retrieved 8 February 2024.
  3. 1 2 Nayak, Barun K; Hazra, Avijit (2011). "How to choose the right statistical test?". Indian Journal of Ophthalmology. 59 (2): 85–86. doi: 10.4103/0301-4738.77005 . ISSN   0301-4738. PMC   3116565 . PMID   21350275.
  4. Lewis, Nancy D.; Lewis, Nigel Da Costa; Lewis, N. D. (2013). 100 Statistical Tests in R: What to Choose, how to Easily Calculate, with Over 300 Illustrations and Examples. Heather Hills Press. ISBN   978-1-4840-5299-0.
  5. Kanji, Gopal K. (18 July 2006). 100 Statistical Tests. SAGE. ISBN   978-1-4462-2250-8.
  6. 1 2 "What is the difference between categorical, ordinal and interval variables?". stats.oarc.ucla.edu. Retrieved 10 February 2024.
  7. 1 2 3 Huth, R.; Pokorná, L. (1 March 2004). "Parametric versus non-parametric estimates of climatic trends" . Theoretical and Applied Climatology. 77 (1): 107–112. Bibcode:2004ThApC..77..107H. doi:10.1007/s00704-003-0026-3. ISSN   1434-4483. S2CID   121539673.
  8. 1 2 3 de Winter, J.C.F. (2019). "Using the Student's t-test with extremely small sample sizes". Practical Assessment, Research, and Evaluation. 18. doi:10.7275/e4r6-dj05.
  9. "t-Test für unabhängige Stichproben". Hochschule Luzern (in German). Retrieved 10 February 2024.
  10. Choi, Won; Lee, Jae Won; Huh, Myung-Hoe; Kang, Seung-Ho (11 January 2003). "An Algorithm for Computing the Exact Distribution of the Kruskal–Wallis Test" . Communications in Statistics - Simulation and Computation. 32 (4): 1029–1040. doi:10.1081/SAC-120023876. ISSN   0361-0918. S2CID   123037097.
  11. McKight, Patrick E.; Najab, Julius (30 January 2010). "Kruskal-Wallis Test". The Corsini Encyclopedia of Psychology. Wiley. p. 1. doi:10.1002/9780470479216.corpsy0491. ISBN   978-0-470-17024-3.
  12. McHugh, Mary L. (15 June 2013). "The Chi-square test of independence". Biochemia Medica. 23 (2): 143–149. doi:10.11613/BM.2013.018. PMC   3900058 . PMID   23894860.
  13. 1 2 3 4 Warner, Pamela (1 October 2013). "Testing association with Fisher's Exact test". Journal of Family Planning and Reproductive Health Care. 39 (4): 281–284. doi:10.1136/jfprhc-2013-100747. ISSN   1471-1893. PMID   24062499.
  14. Károly, Héberger; Róbert, Rajkó (1999). Pair-Correlation Method with parametric and non-parametric test-statistics for variable selection. Description of computer program and application for environmental data case studies. szef. pp. 82–91.
  15. Carpi, Angelo; Rossi, Giuseppe; Coscio, Giancarlo Di; Iervasi, Giorgio; Nicolini, Andrea; Carpi, Federico; Mechanick, Jeffrey I.; Bartolazzi, Armando (2010). "Galectin-3 detection on large-needle aspiration biopsy improves preoperative selection of thyroid nodules: a prospective cohort study". Annals of Medicine. 42 (1): 70–78. doi:10.3109/07853890903439778. ISSN   1365-2060.
  16. 1 2 Ahmad, Fiaz; Khan, Rehan Ahmad (8 September 2015). "A power comparison of various normality tests". Pakistan Journal of Statistics and Operation Research. 11 (3): 331–345. doi: 10.18187/pjsor.v11i3.845 . ISSN   1816-2711.