# Statistical parameter

Last updated

In statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.

## Contents

A parameter is to a population as a statistic is to a sample; that is to say, a parameter describes the true value calculated from the full population, whereas a statistic is an estimated measurement of the parameter based on a subsample. Thus a "statistical parameter" can be more specifically referred to as a population parameter. [1] [2]

## Discussion

### Parameterised Distributions

Suppose that we have an indexed family of distributions. If the index is also a parameter of the members of the family, then the family is a parameterized family. Among parameterized families of distributions are the normal distributions, the Poisson distributions, the binomial distributions, and the exponential family of distributions. For example, the family of normal distributions has two parameters, the mean and the variance: if those are specified, the distribution is known exactly. The family of chi-squared distributions can be indexed by the number of degrees of freedom: the number of degrees of freedom is a parameter for the distributions, and so the family is thereby parameterized.

### Measurement of Parameters

In statistical inference, parameters are sometimes taken to be unobservable, and in this case the statistician's task is to estimate or infer what they can about the parameter based on a random sample of observations taken from the full population. Estimators of a set of parameters of a specific distribution are often measured for a population, under the assumption that the population is (at least approximately) distributed according to that specific probability distribution. In other situations, parameters may be fixed by the nature of the sampling procedure used or the kind of statistical procedure being carried out (for example, the number of degrees of freedom in a Pearson's chi-squared test). Even if a family of distributions is not specified, quantities such as the mean and variance can generally still be regarded as statistical parameters of the population, and statistical procedures can still attempt to make inferences about such population parameters. Parameters of this type are given names appropriate to their roles, including the following.

Where a probability distribution has a domain over a set of objects that are themselves probability distributions, the term concentration parameter is used for quantities that index how variable the outcomes would be. Quantities such as regression coefficients are statistical parameters in the above sense because they index the family of conditional probability distributions that describe how the dependent variables are related to the independent variables.

## Examples

During an election, there may be specific percentages of voters in a country who would vote for each particular candidate – these percentages would be statistical parameters. It is impractical to ask every voter before an election occurs what their candidate preferences are, so a sample of voters will be polled, and a statistic (also called an estimator) – that is, the percentage of the subsample of polled voters – will be measured instead. The statistic, along with an estimation of its accuracy (known as its sampling error), is then used to make inferences about the true statistical parameters (the percentages of all voters).

Similarly, in some forms of testing of manufactured products, rather than destructively testing all products, only a sample of products are tested. Such tests gather statistics supporting an inference that the products meet specifications.

## Related Research Articles

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished. For example, the sample mean is a commonly used estimator of the population mean.

In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic feature of the median in describing data compared to the mean is that it is not skewed by a small proportion of extremely large or small values, and therefore provides a better representation of a "typical" value. Median income, for example, may be a better way to suggest what a "typical" income is, because income distribution can be very skewed. The median is of central importance in robust statistics, as it is the most resistant statistic, having a breakdown point of 50%: so long as no more than half the data are contaminated, the median is not an arbitrarily large or small result.

A parameter, generally, is any characteristic that can help in defining or classifying a particular system. That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc.

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

A statistic (singular) or sample statistic is any quantity computed from values in a sample that is used for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average of sample values is a statistic. The term statistic is used both for the function and for the value of the function on a given sample. When a statistic is being used for a specific purpose, it may be referred to by a name indicating its purpose.

Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

Statistics is a field of inquiry that studies the collection, analysis, interpretation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the physical and social sciences to the humanities; it is also used and misused for making informed decisions in all areas of business and government.

Nonparametric statistics is the branch of statistics that is not based solely on parametrized families of probability distributions. Nonparametric statistics is based on either being distribution-free or having a specified distribution but with the distribution's parameters unspecified. Nonparametric statistics includes both descriptive statistics and statistical inference. Nonparametric tests are often used when the assumptions of parametric tests are violated.

In statistics, a confidence interval (CI) is a type of estimate computed from the statistics of the observed data. This gives a range of values for an unknown parameter. The interval has an associated confidence level that gives the probability with which the estimated interval will contain the true value of the parameter. The confidence level is chosen by the investigator. For a given estimation in a given sample, using a higher confidence level generates a wider confidence interval. In general terms, a confidence interval for an unknown parameter is based on sampling the distribution of a corresponding estimator.

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

Mathematical statistics is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure theory.

A test statistic is a statistic used in statistical hypothesis testing. A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behaviours that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.

The following is a glossary of terms used in the mathematical sciences statistics and probability.

In statistics, resampling is any of a variety of methods for doing one of the following:

1. Estimating the precision of sample statistics by using subsets of available data (jackknifing) or drawing randomly with replacement from a set of data points (bootstrapping)
2. Exchanging labels on data points when performing significance tests
3. Validating models by using random subsets

Bootstrapping is any test or metric that uses random sampling with replacement, and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias can also be measured with respect to the median, rather than the mean, in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Bias is a distinct concept from consistency. Consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In statistical theory, a U-statistic is a class of statistics that is especially important in estimation theory; the letter "U" stands for unbiased. In elementary statistics, U-statistics arise naturally in producing minimum-variance unbiased estimators.

In the comparison of various statistical procedures, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator, experiment, or test needs fewer observations than a less efficient one to achieve a given performance. This article primarily deals with efficiency of estimators.

## References

1. Kotz, S.; et al., eds. (2006), "Parameter", Encyclopedia of Statistical Sciences , Wiley .
2. Everitt, B. S.; Skrondal, A. (2010), The Cambridge Dictionary of Statistics, Cambridge University Press.