A **statistic** (singular) or **sample statistic** is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the function and for the value of the function on a given sample. When a statistic is being used for a specific purpose, it may be referred to by a name indicating its purpose.

- Examples
- Properties
- Observability
- Statistical properties
- Information of a statistic
- See also
- References

When a statistic is used for estimating a population parameter, the statistic is called an * estimator *. A population parameter is any characteristic of a population under study, but when it is not feasible to directly measure the value of a population parameter, statistical methods are used to infer the likely value of the parameter on the basis of a statistic computed from a sample taken from the population. For example, the sample mean is an unbiased estimator of the population mean. This means that the expected value of the sample mean equals the true population mean.^{ [1] }

A * descriptive statistic * is used to summarize the sample data. A * test statistic * is used in statistical hypothesis testing. Note that a single statistic can be used for multiple purposes – for example the sample mean can be used to estimate the population mean, to describe a sample data set, or to test a hypothesis.

Some examples of statistics are:

- "In a recent survey of Americans,
**52%**of Republicans say global warming is happening."

In this case, "52%" is a statistic, namely the percentage of Republicans in the survey sample who believe in global warming. The population is the set of all Republicans in the United States, and the population parameter being estimated is the percentage of *all* Republicans in the United States, not just those surveyed, who believe in global warming.

- "The manager of a large hotel located near Disney World indicated that 20 selected guests had a mean length of stay equal to
**5.6**days."

In this example, "5.6 days" is a statistic, namely the mean length of stay for our sample of 20 hotel guests. The population is the set of all guests of this hotel, and the population parameter being estimated is the mean length of stay for *all* guests.^{ [2] } Note that whether the estimator is unbiased in this case depends upon the sample selection process; see the inspection paradox.

There are a variety of functions that are used to calculate statistics. Some include:

- Sample mean, sample median, and sample mode
- Sample variance and sample standard deviation
- Sample quantiles besides the median, e.g., quartiles and percentiles
- Test statistics, such as t-statistic, chi-squared statistic, f statistic
- Order statistics, including sample maximum and minimum
- Sample moments and functions thereof, including kurtosis and skewness
- Various functionals of the empirical distribution function

A statistic is an *observable* random variable, which differentiates it both from a * parameter * that is a generally unobservable quantity describing a property of a statistical population, and from an unobservable random variable, such as the difference between an observed measurement and a population average. A parameter can only be computed exactly if the entire population can be observed without error; for instance, in a perfect census or for a population of standardized test takers.

Statisticians often contemplate a parameterized family of probability distributions, any member of which could be the distribution of some measurable aspect of each member of a population, from which a sample is drawn randomly. For example, the parameter may be the average height of 25-year-old men in North America. The height of the members of a sample of 100 such men are measured; the average of those 100 numbers is a statistic. The average of the heights of all members of the population is not a statistic unless that has somehow also been ascertained (such as by measuring every member of the population). The average height that would be calculated using *all* of the individual heights of *all* 25-year-old North American men is a parameter, and not a statistic.

Important potential properties of statistics include completeness, consistency, sufficiency, unbiasedness, minimum mean square error, low variance, robustness, and computational convenience.

Information of a statistic on model parameters can be defined in several ways. The most common is the Fisher information, which is defined on the statistic model induced by the statistic. Kullback information measure can also be used.

Look up in Wiktionary, the free dictionary. statistic |

In statistics, an **estimator** is a rule for calculating an estimate of a given quantity based on observed data: thus the rule, the quantity of interest and its result are distinguished. For example, the sample mean is a commonly used estimator of the population mean.

**Statistics** is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

**Statistical inference** is the process of using data analysis to infer properties of an underlying distribution of probability. **Inferential statistical analysis** infers properties of a population, for example by **testing hypotheses** and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

In statistics, **point estimation** involves the use of sample data to calculate a single value which is to serve as a "best guess" or "best estimate" of an unknown population parameter. More formally, it is the application of a point estimator to the data to obtain a point estimate.

**Statistical bias** is a systematic tendency which causes differences between results and facts. The bias exists in numbers of the process of data analysis, including the source of the data, the estimator chosen, and the ways the data was analyzed. Bias may have a serious impact on results, for example, to investigate people's buying habits. If the sample size is not large enough, the results may not be representative of the buying habits of all the people. That is, there may be discrepancies between the survey results and the actual results. Therefore, understanding the source of statistical bias can help to assess whether the observed results are close to the real results.

In statistics, the **mean squared error** (**MSE**) or **mean squared deviation** (**MSD**) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.

In statistics, the **Rao–Blackwell theorem**, sometimes referred to as the **Rao–Blackwell–Kolmogorov theorem**, is a result which characterizes the transformation of an arbitrarily crude estimator into an estimator that is optimal by the mean-squared-error criterion or any of a variety of similar criteria.

In statistics, as opposed to its general use in mathematics, a **parameter** is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.

A **truncated mean** or **trimmed mean** is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.

In statistics and optimization, **errors** and **residuals** are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value". The **error** of an observation is the deviation of the observed value from the true value of a quantity of interest. The **residual** is the difference between the observed value and the *estimated* value of the quantity of interest. The distinction is most important in regression analysis, where the concepts are sometimes called the **regression errors** and **regression residuals** and where they lead to the concept of studentized residuals.

In statistical inference, specifically predictive inference, a **prediction interval** is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

In statistics, a **consistent estimator** or **asymptotically consistent estimator** is an estimator—a rule for computing estimates of a parameter *θ*_{0}—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to *θ*_{0}. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to *θ*_{0} converges to one.

This **glossary of statistics and probability** is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics.

In statistics, **resampling** is any of a variety of methods for doing one of the following:

- Estimating the precision of sample statistics by using subsets of available data (
**jackknifing**) or drawing randomly with replacement from a set of data points (**bootstrapping**) - Permutation tests are exact tests: Exchanging labels on data points when performing significance tests
- Validating models by using random subsets

In statistics, the **bias** of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called **unbiased**. In statistics, "bias" is an **objective** property of an estimator. Bias can also be measured with respect to the median, rather than the mean, in which case one distinguishes *median*-unbiased from the usual *mean*-unbiasedness property. Bias is a distinct concept from consistency. Consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In statistics, the **Hodges–Lehmann estimator** is a robust and nonparametric estimator of a population's location parameter. For populations that are symmetric about one median, such as the (Gaussian) normal distribution or the Student *t*-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median. For non-symmetric populations, the Hodges–Lehmann estimator estimates the "pseudo–median", which is closely related to the population median.

In statistical theory, a **U-statistic** is a class of statistics that is especially important in estimation theory; the letter "U" stands for unbiased. In elementary statistics, U-statistics arise naturally in producing minimum-variance unbiased estimators.

In statistics, an **L-estimator** is an estimator which is a linear combination of order statistics of the measurements. This can be as little as a single point, as in the median, or as many as all points, as in the mean.

In statistics, a **trimmed estimator** is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.

In the comparison of various statistical procedures, **efficiency** is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator, experiment, or test needs fewer observations than a less efficient one to achieve a given error performance. An efficient estimator is characterized by a small variance or mean square error, indicating that there is a small deviance between the estimated value and the "true" value.

- Kokoska, Stephen (2015).
*Introductory Statistics: A Problem-Solving Approach*(2nd ed.). New York: W. H. Freeman and Company. ISBN 978-1-4641-1169-3.

- Parker, Sybil P (editor in chief). "Statistic". McGraw-Hill Dictionary of Scientific and Technical Terms. Fifth Edition. McGraw-Hill, Inc. 1994. ISBN 0-07-042333-4. Page 1912.
- DeGroot and Schervish. "Definition of a Statistic". Probability and Statistics. International Edition. Third Edition. Addison Wesley. 2002. ISBN 0-321-20473-5. Pages 370 to 371.

- ↑ Kokoska 2015, p. 296-308.
- ↑ Kokoska 2015, p. 296-297.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.