Estimator

Last updated

In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean.

Contents

There are point and interval estimators. The point estimators yield single-valued results, although this includes the possibility of single vector-valued results and results that can be expressed as a single function. This is in contrast to an interval estimator, where the result would be a range of plausible values (or vectors or functions).

Estimation theory is concerned with the properties of estimators; that is, with defining properties that can be used to compare different estimators (different rules for creating estimates) for the same quantity, based on the same data. Such properties can be used to determine the best rules to use under given circumstances. However, in robust statistics, statistical theory goes on to consider the balance between having good properties, if tightly defined assumptions hold, and having less good properties that hold under wider conditions.

Background

An "estimator" or "point estimate" is a statistic (that is, a function of the data) that is used to infer the value of an unknown parameter in a statistical model. The parameter being estimated is sometimes called the estimand . It can be either finite-dimensional (in parametric and semi-parametric models), or infinite-dimensional (semi-parametric and non-parametric models). [2] If the parameter is denoted then the estimator is traditionally written by adding a circumflex over the symbol: . Being a function of the data, the estimator is itself a random variable; a particular realization of this random variable is called the "estimate". Sometimes the words "estimator" and "estimate" are used interchangeably.

The definition places virtually no restrictions on which functions of the data can be called the "estimators". The attractiveness of different estimators can be judged by looking at their properties, such as unbiasedness, mean square error, consistency, asymptotic distribution, etc. The construction and comparison of estimators are the subjects of the estimation theory. In the context of decision theory, an estimator is a type of decision rule, and its performance may be evaluated through the use of loss functions.

When the word "estimator" is used without a qualifier, it usually refers to point estimation. The estimate in this case is a single point in the parameter space. There also exists another type of estimator: interval estimators, where the estimates are subsets of the parameter space.

The problem of density estimation arises in two applications. Firstly, in estimating the probability density functions of random variables and secondly in estimating the spectral density function of a time series. In these problems the estimates are functions that can be thought of as point estimates in an infinite dimensional space, and there are corresponding interval estimation problems.

Definition

Suppose a fixed parameter needs to be estimated. Then an "estimator" is a function that maps the sample space to a set of sample estimates. An estimator of is usually denoted by the symbol . It is often convenient to express the theory using the algebra of random variables: thus if X is used to denote a random variable corresponding to the observed data, the estimator (itself treated as a random variable) is symbolised as a function of that random variable, . The estimate for a particular observed data value (i.e. for ) is then , which is a fixed value. Often an abbreviated notation is used in which is interpreted directly as a random variable, but this can cause confusion.

Quantified properties

The following definitions and attributes are relevant. [3]

Error

For a given sample , the "error" of the estimator is defined as

where is the parameter being estimated. The error, e, depends not only on the estimator (the estimation formula or procedure), but also on the sample.

Mean squared error

The mean squared error of is defined as the expected value (probability-weighted average, over all samples) of the squared errors; that is,

It is used to indicate how far, on average, the collection of estimates are from the single parameter being estimated. Consider the following analogy. Suppose the parameter is the bull's-eye of a target, the estimator is the process of shooting arrows at the target, and the individual arrows are estimates (samples). Then high MSE means the average distance of the arrows from the bull's-eye is high, and low MSE means the average distance from the bull's-eye is low. The arrows may or may not be clustered. For example, even if all arrows hit the same point, yet grossly miss the target, the MSE is still relatively large. However, if the MSE is relatively low then the arrows are likely more highly clustered (than highly dispersed) around the target.

Sampling deviation

For a given sample , the sampling deviation of the estimator is defined as

where is the expected value of the estimator. The sampling deviation, d, depends not only on the estimator, but also on the sample.

Variance

The variance of is simply the expected value of the squared sampling deviations; that is, . It is used to indicate how far, on average, the collection of estimates are from the expected value of the estimates. (Note the difference between MSE and variance.) If the parameter is the bull's-eye of a target, and the arrows are estimates, then a relatively high variance means the arrows are dispersed, and a relatively low variance means the arrows are clustered. Even if the variance is low, the cluster of arrows may still be far off-target, and even if the variance is high, the diffuse collection of arrows may still be unbiased. Finally, even if all arrows grossly miss the target, if they nevertheless all hit the same point, the variance is zero.

Bias

The bias of is defined as . It is the distance between the average of the collection of estimates, and the single parameter being estimated. The bias of is a function of the true value of so saying that the bias of is means that for every the bias of is .

The bias also is the expected value of the error, since . If the parameter is the bull's-eye of a target, and the arrows are estimates, then a relatively high absolute value for the bias means the average position of the arrows is off-target, and a relatively low absolute bias means the average position of the arrows is on target. They may be dispersed, or may be clustered. The relationship between bias and variance is analogous to the relationship between accuracy and precision.

The estimator is an unbiased estimator of if and only if . Bias is a property of the estimator, not of the estimate. Often, people refer to a "biased estimate" or an "unbiased estimate," but they really are talking about an "estimate from a biased estimator," or an "estimate from an unbiased estimator." Also, people often confuse the "error" of a single estimate with the "bias" of an estimator. That the error for one estimate is large, does not mean the estimator is biased. In fact, even if all estimates have astronomical absolute values for their errors, if the expected value of the error is zero, the estimator is unbiased. Also, an estimator's being biased does not preclude the error of an estimate from being zero in a particular instance. The ideal situation is to have an unbiased estimator with low variance, and also try to limit the number of samples where the error is extreme (that is, have few outliers). Yet unbiasedness is not essential. Often, if just a little bias is permitted, then an estimator can be found with lower MSE and/or fewer outlier sample estimates.

An alternative to the version of "unbiased" above, is "median-unbiased", where the median of the distribution of estimates agrees with the true value; thus, in the long run half the estimates will be too low and half too high. While this applies immediately only to scalar-valued estimators, it can be extended to any measure of central tendency of a distribution: see median-unbiased estimators.

Relationships among the quantities

Behavioral properties

Consistency

A consistent sequence of estimators is a sequence of estimators that converge in probability to the quantity being estimated as the index (usually the sample size) grows without bound. In other words, increasing the sample size increases the probability of the estimator being close to the population parameter.

Mathematically, a sequence of estimators {tn; n ≥ 0} is a consistent estimator for parameter θ if and only if, for all ϵ > 0, no matter how small, we have

The consistency defined above may be called weak consistency. The sequence is strongly consistent, if it converges almost surely to the true value.

An estimator that converges to a multiple of a parameter can be made into a consistent estimator by multiplying the estimator by a scale factor, namely the true value divided by the asymptotic value of the estimator. This occurs frequently in estimation of scale parameters by measures of statistical dispersion.

Asymptotic normality

An asymptotically normal estimator is a consistent estimator whose distribution around the true parameter θ approaches a normal distribution with standard deviation shrinking in proportion to as the sample size n grows. Using to denote convergence in distribution, tn is asymptotically normal if

for some V.

In this formulation V/n can be called the asymptotic variance of the estimator. However, some authors also call V the asymptotic variance. Note that convergence will not necessarily have occurred for any finite "n", therefore this value is only an approximation to the true variance of the estimator, while in the limit the asymptotic variance (V/n) is simply zero. To be more specific, the distribution of the estimator tn converges weakly to a dirac delta function centered at .

The central limit theorem implies asymptotic normality of the sample mean as an estimator of the true mean. More generally, maximum likelihood estimators are asymptotically normal under fairly weak regularity conditions — see the asymptotics section of the maximum likelihood article. However, not all estimators are asymptotically normal; the simplest examples are found when the true value of a parameter lies on the boundary of the allowable parameter region.

Efficiency

Two naturally desirable properties of estimators are for them to be unbiased and have minimal mean squared error (MSE). These cannot in general both be satisfied simultaneously: a biased estimator may have lower mean squared error (MSE) than any unbiased estimator; see estimator bias.

Among unbiased estimators, there often exists one with the lowest variance, called the minimum variance unbiased estimator (MVUE). In some cases an unbiased efficient estimator exists, which, in addition to having the lowest variance among unbiased estimators, satisfies the Cramér–Rao bound, which is an absolute lower bound on variance for statistics of a variable.

Concerning such "best unbiased estimators", see also Cramér–Rao bound, Gauss–Markov theorem, Lehmann–Scheffé theorem, Rao–Blackwell theorem.

Robustness

See also

Notes

  1. Mosteller, F.; Tukey, J. W. (1987) [1968]. "Data Analysis, including Statistics". The Collected Works of John W. Tukey: Philosophy and Principles of Data Analysis 1965–1986. 4. CRC Press. pp. 601–720 [p. 633]. ISBN   0-534-05101-4 via Google Books.
  2. Kosorok (2008), Section 3.1, pp 35–39.
  3. Jaynes (2007), p.172.

Related Research Articles

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a probability distribution by maximizing a likelihood function, so that under the assumed statistical model the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.

In statistics, the Rao–Blackwell theorem, sometimes referred to as the Rao–Blackwell–Kolmogorov theorem, is a result which characterizes the transformation of an arbitrarily crude estimator into an estimator that is optimal by the mean-squared-error criterion or any of a variety of similar criteria.

In estimation theory and statistics, the Cramér–Rao bound (CRB) expresses a lower bound on the variance of unbiased estimators of a deterministic parameter, stating that the variance of any such estimator is at least as high as the inverse of the Fisher information. The result is named in honor of Harald Cramér and C. R. Rao, but has independently also been derived by Maurice Fréchet, Georges Darmois, as well as Alexander Aitken and Harold Silverstone.

Consistent estimator Statistical estimator converging in probability to a true parameter as sample size increases

In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.

Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.

In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.

In statistics, the method of moments is a method of estimation of population parameters.

Empirical distribution function

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.

The James–Stein estimator is a biased estimator of the mean, , of (possibly) correlated Gaussian distributed random vectors with unknown means .

Bootstrapping is any test or metric that uses random sampling with replacement, and falls under the broader class of resampling methods. Bootstrapping assigns measures of accuracy to sample estimates. This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias can also be measured with respect to the median, rather than the mean, in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Bias is a distinct concept from consistency. Consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a frequently used measure of the differences between values predicted by a model or an estimator and the values observed. The RMSD represents the square root of the second sample moment of the differences between predicted values and observed values or the quadratic mean of these differences. These deviations are called residuals when the calculations are performed over the data sample that was used for estimation and are called errors when computed out-of-sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various data points into a single measure of predictive power. RMSD is a measure of accuracy, to compare forecasting errors of different models for a particular dataset and not between datasets, as it is scale-dependent.

In statistics, the jackknife is a resampling technique especially useful for variance and bias estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. The jackknife estimator of a parameter is found by systematically leaving out each observation from a dataset and calculating the estimate and then finding the average of these calculations. Given a sample of size , the jackknife estimate is found by aggregating the estimates of each -sized sub-sample.

In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.

In statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation. However, the correction often increases the mean squared error in these estimations. This technique is named after Friedrich Bessel.

Maximum spacing estimation

In statistics, maximum spacing estimation, or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.

In the comparison of various statistical procedures, efficiency is a measure of quality of an estimator, of an experimental design, or of a hypothesis testing procedure. Essentially, a more efficient estimator, experiment, or test needs fewer observations than a less efficient one to achieve a given performance. This article primarily deals with efficiency of estimators.

Two-step M-estimators deals with M-estimation problems that require preliminary estimation to obtain the parameter of interest. Two-step M-estimation is different from usual M-estimation problem because asymptotic distribution of the second-step estimator generally depends on the first-step estimator. Accounting for this change in asymptotic distribution is important for valid inference.

References