M-estimator

Last updated

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. [1] Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators.[ citation needed ] However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation.

Contents

More generally, an M-estimator may be defined to be a zero of an estimating function. [2] [3] [4] [5] [6] [7] This estimating function is often the derivative of another statistical function. For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

Historical motivation

The method of least squares is a prototypical M-estimator, since the estimator is defined as a minimum of the sum of squares of the residuals.

Another popular M-estimator is maximum-likelihood estimation. For a family of probability density functions f parameterized by θ, a maximum likelihood estimator of θ is computed for each set of data by maximizing the likelihood function over the parameter space { θ } . When the observations are independent and identically distributed, a ML-estimate satisfies

or, equivalently,

Maximum-likelihood estimators have optimal properties in the limit of infinitely many observations under rather general conditions, but may be biased and not the most efficient estimators for finite samples.

Definition

In 1964, Peter J. Huber proposed generalizing maximum likelihood estimation to the minimization of

where ρ is a function with certain properties (see below). The solutions

are called M-estimators ("M" for "maximum likelihood-type" (Huber, 1981, page 43)); other types of robust estimators include L-estimators, R-estimators and S-estimators. Maximum likelihood estimators (MLE) are thus a special case of M-estimators. With suitable rescaling, M-estimators are special cases of extremum estimators (in which more general functions of the observations can be used).

The function ρ, or its derivative, ψ, can be chosen in such a way to provide the estimator desirable properties (in terms of bias and efficiency) when the data are truly from the assumed distribution, and 'not bad' behaviour when the data are generated from a model that is, in some sense, close to the assumed distribution.

Types

M-estimators are solutions, θ, which minimize

This minimization can always be done directly. Often it is simpler to differentiate with respect to θ and solve for the root of the derivative. When this differentiation is possible, the M-estimator is said to be of ψ-type. Otherwise, the M-estimator is said to be of ρ-type.

In most practical cases, the M-estimators are of ψ-type.

ρ-type

For positive integer r, let and be measure spaces. is a vector of parameters. An M-estimator of ρ-type is defined through a measurable function . It maps a probability distribution on to the value (if it exists) that minimizes :

For example, for the maximum likelihood estimator, , where .

ψ-type

If is differentiable with respect to , the computation of is usually much easier. An M-estimator of ψ-type T is defined through a measurable function . It maps a probability distribution F on to the value (if it exists) that solves the vector equation:

For example, for the maximum likelihood estimator, , where denotes the transpose of vector u and .

Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is . The previous definitions can easily be extended to finite samples.

If the function ψ decreases to zero as , the estimator is called redescending. Such estimators have some additional desirable properties, such as complete rejection of gross outliers.

Computation

For many choices of ρ or ψ, no closed form solution exists and an iterative approach to computation is required. It is possible to use standard function optimization algorithms, such as Newton–Raphson. However, in most cases an iteratively re-weighted least squares fitting algorithm can be performed; this is typically the preferred method.

For some choices of ψ, specifically, redescending functions, the solution may not be unique. The issue is particularly relevant in multivariate and regression problems. Thus, some care is needed to ensure that good starting points are chosen. Robust starting points, such as the median as an estimate of location and the median absolute deviation as a univariate estimate of scale, are common.

Concentrating parameters

In computation of M-estimators, it is sometimes useful to rewrite the objective function so that the dimension of parameters is reduced. The procedure is called “concentrating” or “profiling”. Examples in which concentrating parameters increases computation speed include seemingly unrelated regressions (SUR) models. [9] Consider the following M-estimation problem:

Assuming differentiability of the function q, M-estimator solves the first order conditions:

Now, if we can solve the second equation for γ in terms of and , the second equation becomes:

where g is, there is some function to be found. Now, we can rewrite the original objective function solely in terms of β by inserting the function g into the place of . As a result, there is a reduction in the number of parameters.

Whether this procedure can be done depends on particular problems at hand. However, when it is possible, concentrating parameters can facilitate computation to a great degree. For example, in estimating SUR model of 6 equations with 5 explanatory variables in each equation by Maximum Likelihood, the number of parameters declines from 51 to 30. [9]

Despite its appealing feature in computation, concentrating parameters is of limited use in deriving asymptotic properties of M-estimator. [10] The presence of W in each summand of the objective function makes it difficult to apply the law of large numbers and the central limit theorem.

Properties

Distribution

It can be shown that M-estimators are asymptotically normally distributed. As such, Wald-type approaches to constructing confidence intervals and hypothesis tests can be used. However, since the theory is asymptotic, it will frequently be sensible to check the distribution, perhaps by examining the permutation or bootstrap distribution.

Influence function

The influence function of an M-estimator of -type is proportional to its defining function.

Let T be an M-estimator of ψ-type, and G be a probability distribution for which is defined. Its influence function IF is

assuming the density function exists. A proof of this property of M-estimators can be found in Huber (1981, Section 3.2).

Applications

M-estimators can be constructed for location parameters and scale parameters in univariate and multivariate settings, as well as being used in robust regression.

Examples

Mean

Let (X1, ..., Xn) be a set of independent, identically distributed random variables, with distribution F.

If we define

we note that this is minimized when θ is the mean of the Xs. Thus the mean is an M-estimator of ρ-type, with this ρ function.

As this ρ function is continuously differentiable in θ, the mean is thus also an M-estimator of ψ-type for ψ(x, θ) = θ  x.

Median

For the median estimation of (X1, ..., Xn), instead we can define the ρ function as

and similarly, the ρ function is minimized when θ is the median of the Xs.

While this ρ function is not differentiable in θ, the ψ-type M-estimator, which is the subgradient of ρ function, can be expressed as

and

[ clarification needed ]

Sufficient conditions for statistical consistency

M-estimators are consistent under various sets of conditions. A typical set of assumptions is the class of functions satisfies a uniform law of large numbers and that the maximum is well-separated. Specifically, given an empirical and population objective , respectively, as :

and for every :

where is a distance function and is the optimum, then M-estimation is consistent. [11]

The uniform convergence constraint is not necessarily required; an alternate set of assumptions is to instead consider pointwise convergence (in probability) of the objective functions. Additionally, assume that each of the has continuous derivative with exactly one zero or has a derivative which is non-decreasing and is asymptotically order . Finally, assume that the maximum is well-separated. Then M-estimation is consistent. [12]

See also

Related Research Articles

The likelihood function is the joint probability of observed data viewed as a function of the parameters of a statistical model.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Cramér–Rao bound</span> Lower bound on variance of an estimator

In estimation theory and statistics, the Cramér–Rao bound (CRB) relates to estimation of a deterministic parameter. The result is named in honor of Harald Cramér and C. R. Rao, but has also been derived independently by Maurice Fréchet, Georges Darmois, and by Alexander Aitken and Harold Silverstone. It states that the precision of any unbiased estimator is at most the Fisher information; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance.

In mathematical statistics, the Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.

Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered:

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is an estimate of an unknown quantity, that equals the mode of the posterior distribution. The MAP can be used to obtain a point estimate of an unobserved quantity on the basis of empirical data. It is closely related to the method of maximum likelihood (ML) estimation, but employs an augmented optimization objective which incorporates a prior distribution over the quantity one wants to estimate. MAP estimation can therefore be seen as a regularization of maximum likelihood estimation.

In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models. Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

Robust statistics are statistics which maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution. For example, robust methods work well for mixtures of two normal distributions with different standard deviations; under this model, non-robust methods like a t-test work poorly.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function. Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation.

The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below.

In statistical decision theory, where we are faced with the problem of estimating a deterministic parameter (vector) from observations an estimator is called minimax if its maximal risk is minimal among all estimators of . In a sense this means that is an estimator which performs best in the worst possible case allowed in the problem.

<span class="mw-page-title-main">Maximum spacing estimation</span> Method of estimating a statistical models parameters

In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In statistical inference, the concept of a confidence distribution (CD) has often been loosely referred to as a distribution function on the parameter space that can represent confidence intervals of all levels for a parameter of interest. Historically, it has typically been constructed by inverting the upper limits of lower sided confidence intervals of all levels, and it was also commonly associated with a fiducial interpretation, although it is a purely frequentist concept. A confidence distribution is NOT a probability distribution function of the parameter of interest, but may still be a function useful for making inferences.

Two-step M-estimators deals with M-estimation problems that require preliminary estimation to obtain the parameter of interest. Two-step M-estimation is different from usual M-estimation problem because asymptotic distribution of the second-step estimator generally depends on the first-step estimator. Accounting for this change in asymptotic distribution is important for valid inference.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

In statistics, the Innovation Method provides an estimator for the parameters of stochastic differential equations given a time series of observations of the state variables. In the framework of continuous-discrete state space models, the innovation estimator is obtained by maximizing the log-likelihood of the corresponding discrete-time innovation process with respect to the parameters. The innovation estimator can be classified as a M-estimator, a quasi-maximum likelihood estimator or a prediction error estimator depending on the inferential considerations that want to be emphasized. The innovation method is a system identification technique for developing mathematical models of dynamical systems from measured data and for the optimal design of experiments.

References

  1. Hayashi, Fumio (2000). "Extremum Estimators". Econometrics. Princeton University Press. ISBN   0-691-01018-8.
  2. Vidyadhar P. Godambe, editor. Estimating functions, volume 7 of Oxford Statistical Science Series. The Clarendon Press Oxford University Press, New York, 1991.
  3. Christopher C. Heyde. Quasi-likelihood and its application: A general approach to optimal parameter estimation. Springer Series in Statistics. Springer-Verlag, New York, 1997.
  4. D. L. McLeish and Christopher G. Small. The theory and applications of statistical inference functions, volume 44 of Lecture Notes in Statistics. Springer-Verlag, New York, 1988.
  5. Parimal Mukhopadhyay. An Introduction to Estimating Functions. Alpha Science International, Ltd, 2004.
  6. Christopher G. Small and Jinfang Wang. Numerical methods for nonlinear estimating equations, volume 29 of Oxford Statistical Science Series. The Clarendon Press Oxford University Press, New York, 2003.
  7. Sara A. van de Geer. Empirical Processes in M-estimation: Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2000.
  8. Ferguson, Thomas S. (1982). "An inconsistent maximum likelihood estimate". Journal of the American Statistical Association. 77 (380): 831–834. doi:10.1080/01621459.1982.10477894. JSTOR   2287314.
  9. 1 2 Giles, D. E. (July 10, 2012). "Concentrating, or Profiling, the Likelihood Function".
  10. Wooldridge, J. M. (2001). Econometric Analysis of Cross Section and Panel Data . Cambridge, Mass.: MIT Press. ISBN   0-262-23219-7.
  11. Vaart AW van der. Asymptotic Statistics. Cambridge University Press; 1998.
  12. Vaart AW van der. Asymptotic Statistics. Cambridge University Press; 1998.

Further reading