This article includes a list of general references, but it lacks sufficient corresponding inline citations .(January 2015) |
In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]
More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point , is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2] Similarly, when dealing with complex variables, a critical point is a point in the function's domain where its derivative is equal to zero (or the function is not holomorphic). [3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [5]
This sort of definition extends to differentiable maps between and a critical point being, in this case, a point where the rank of the Jacobian matrix is not maximal. It extends further to differentiable maps between differentiable manifolds, as the points where the rank of the Jacobian matrix decreases. In this case, critical points are also called bifurcation points . In particular, if C is a plane curve, defined by an implicit equation f (x,y) = 0, the critical points of the projection onto the x-axis, parallel to the y-axis are the points where the tangent to C are parallel to the y-axis, that is the points where . In other words, the critical points are those where the implicit function theorem does not apply.
A critical point of a function of a single real variable, f (x), is a value x0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ). [2] A critical value is the image under f of a critical point. These concepts may be visualized through the graph of f: at a critical point, the graph has a horizontal tangent if one can be assigned at all.
Notice how, for a differentiable function, critical point is the same as stationary point.
Although it is easily visualized on the graph (which is a curve), the notion of critical point of a function must not be confused with the notion of critical point, in some direction, of a curve (see below for a detailed definition). If g(x, y) is a differentiable function of two variables, then g(x,y) = 0 is the implicit equation of a curve. A critical point of such a curve, for the projection parallel to the y-axis (the map (x, y) → x), is a point of the curve where This means that the tangent of the curve is parallel to the y-axis, and that, at this point, g does not define an implicit function from x to y (see implicit function theorem). If (x0, y0) is such a critical point, then x0 is the corresponding critical value. Such a critical point is also called a bifurcation point , as, generally, when x varies, there are two branches of the curve on a side of x0 and zero on the other side.
It follows from these definitions that a differentiable function f (x) has a critical point x0 with critical value y0, if and only if (x0, y0) is a critical point of its graph for the projection parallel to the x-axis, with the same critical value y0. If f is not differentiable at x0 due to the tangent becoming parallel to the y-axis, then x0 is again a critical point of f, but now (x0, y0) is a critical point of its graph for the projection parallel to the y-axis.
For example, the critical points of the unit circle of equation are (0, 1) and (0, -1) for the projection parallel to the x-axis, and (1, 0) and (-1, 0) for the direction parallel to the y-axis. If one considers the upper half circle as the graph of the function , then x = 0 is a critical point with critical value 1 due to the derivative being equal to 0, and x = ±1 are critical points with critical value 0 due to the derivative being undefined.
By the Gauss–Lucas theorem, all of a polynomial function's critical points in the complex plane are within the convex hull of the roots of the function. Thus for a polynomial function with only real roots, all critical points are real and are between the greatest and smallest roots.
Sendov's conjecture asserts that, if all of a function's roots lie in the unit disk in the complex plane, then there is at least one critical point within unit distance of any given root.
Critical points play an important role in the study of plane curves defined by implicit equations, in particular for sketching them and determining their topology. The notion of critical point that is used in this section, may seem different from that of previous section. In fact it is the specialization to a simple case of the general notion of critical point given below.
Thus, we consider a curve C defined by an implicit equation , where f is a differentiable function of two variables, commonly a bivariate polynomial. The points of the curve are the points of the Euclidean plane whose Cartesian coordinates satisfy the equation. There are two standard projections and , defined by and that map the curve onto the coordinate axes. They are called the projection parallel to the y-axis and the projection parallel to the x-axis, respectively.
A point of C is critical for, if the tangent to C exists and is parallel to the y-axis. In that case, the images by of the critical point and of the tangent are the same point of the x-axis, called the critical value. Thus a point of C is critical for if its coordinates are a solution of the system of equations:
This implies that this definition is a special case of the general definition of a critical point, which is given below.
The definition of a critical point for is similar. If C is the graph of a function , then (x, y) is critical for if and only if x is a critical point of g, and that the critical values are the same.
Some authors define the critical points of C as the points that are critical for either or , although they depend not only on C, but also on the choice of the coordinate axes. It depends also on the authors if the singular points are considered as critical points. In fact the singular points are the points that satisfy
and are thus solutions of either system of equations characterizing the critical points. With this more general definition, the critical points for are exactly the points where the implicit function theorem does not apply.
When the curve C is algebraic, that is when it is defined by a bivariate polynomial f, then the discriminant is a useful tool to compute the critical points.
Here we consider only the projection ; Similar results apply to by exchanging x and y.
Let be the discriminant of f viewed as a polynomial in y with coefficients that are polynomials in x. This discriminant is thus a polynomial in x which has the critical values of among its roots.
More precisely, a simple root of is either a critical value of such the corresponding critical point is a point which is not singular nor an inflection point, or the x-coordinate of an asymptote which is parallel to the y-axis and is tangent "at infinity" to an inflection point (inflexion asymptote).
A multiple root of the discriminant correspond either to several critical points or inflection asymptotes sharing the same critical value, or to a critical point which is also an inflection point, or to a singular point.
For a function of several real variables, a point P (that is a set of values for the input variables, which is viewed as a point in ) is critical if it is a point where the gradient is zero or undefined. [5] The critical values are the values of the function at the critical points.
A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.
A critical point at which the Hessian matrix is nonsingular is said to be nondegenerate, and the signs of the eigenvalues of the Hessian determine the local behavior of the function. In the case of a function of a single variable, the Hessian is simply the second derivative, viewed as a 1×1-matrix, which is nonsingular if and only if it is not zero. In this case, a non-degenerate critical point is a local maximum or a local minimum, depending on the sign of the second derivative, which is positive for a local minimum and negative for a local maximum. If the second derivative is null, the critical point is generally an inflection point, but may also be an undulation point, which may be a local minimum or a local maximum.
For a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called the index of the critical point. A non-degenerate critical point is a local maximum if and only if the index is n, or, equivalently, if the Hessian matrix is negative definite; it is a local minimum if the index is zero, or, equivalently, if the Hessian matrix is positive definite. For the other values of the index, a non-degenerate critical point is a saddle point, that is a point which is a maximum in some directions and a minimum in others.
By Fermat's theorem, all local maxima and minima of a continuous function occur at critical points. Therefore, to find the local maxima and minima of a differentiable function, it suffices, theoretically, to compute the zeros of the gradient and the eigenvalues of the Hessian matrix at these zeros. This requires the solution of a system of equations, which can be a difficult task. The usual numerical algorithms are much more efficient for finding local extrema, but cannot certify that all extrema have been found. In particular, in global optimization, these methods cannot certify that the output is really the global optimum.
When the function to minimize is a multivariate polynomial, the critical points and the critical values are solutions of a system of polynomial equations, and modern algorithms for solving such systems provide competitive certified methods for finding the global minimum.
Given a differentiable map the critical points of f are the points of where the rank of the Jacobian matrix of f is not maximal. [6] The image of a critical point under f is a called a critical value. A point in the complement of the set of critical values is called a regular value. Sard's theorem states that the set of critical values of a smooth map has measure zero.
Some authors [7] give a slightly different definition: a critical point of f is a point of where the rank of the Jacobian matrix of f is less than n. With this convention, all points are critical when m < n.
These definitions extend to differential maps between differentiable manifolds in the following way. Let be a differential map between two manifolds V and W of respective dimensions m and n. In the neighborhood of a point p of V and of f (p), charts are diffeomorphisms and The point p is critical for f if is critical for This definition does not depend on the choice of the charts because the transitions maps being diffeomorphisms, their Jacobian matrices are invertible and multiplying by them does not modify the rank of the Jacobian matrix of If M is a Hilbert manifold (not necessarily finite dimensional) and f is a real-valued function then we say that p is a critical point of f if f is not a submersion at p. [8]
Critical points are fundamental for studying the topology of manifolds and real algebraic varieties. [1] In particular, they are the basic tool for Morse theory and catastrophe theory.
The link between critical points and topology already appears at a lower level of abstraction. For example, let be a sub-manifold of and P be a point outside The square of the distance to P of a point of is a differential map such that each connected component of contains at least a critical point, where the distance is minimal. It follows that the number of connected components of is bounded above by the number of critical points.
In the case of real algebraic varieties, this observation associated with Bézout's theorem allows us to bound the number of connected components by a function of the degrees of the polynomials that define the variety.
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.
In mathematics, the mean value theorem states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.
In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots of a real-valued function. The most basic version starts with a real-valued function f, its derivative f′, and an initial guess x0 for a root of f. If f satisfies certain assumptions and the initial guess is close, then
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant. Partial derivatives are used in vector calculus and differential geometry.
In geometry, a normal is an object that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point.
In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth and does not contain any break, angle, or cusp.
In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave to convex, or vice versa.
In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero, but which is not a local extremum of the function. An example of a saddle point is when there is a critical point with a relative minimum along one axial direction and at a relative maximum along the crossing axis. However, a saddle point need not be in this form. For example, the function has a critical point at that is a saddle point since it is neither a relative maximum nor relative minimum, but it does not have a relative maximum or relative minimum in the -direction.
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.
In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing.
In the mathematical field of algebraic geometry, a singular point of an algebraic varietyV is a point P that is 'special', in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory.
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over its domain.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. In partial differential equations one may measure the distances between functions using Lp norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov–Hausdorff distance.
{{cite book}}
: CS1 maint: others (link)