Hessian matrix

Last updated

In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or, ambiguously, by ∇2.

Contents

Definitions and properties

Suppose is a function taking as input a vector and outputting a scalar If all second-order partial derivatives of exist, then the Hessian matrix of is a square matrix, usually defined and arranged as That is, the entry of the ith row and the jth column is

If furthermore the second partial derivatives are all continuous, the Hessian matrix is a symmetric matrix by the symmetry of second derivatives.

The determinant of the Hessian matrix is called the Hessian determinant. [1]

The Hessian matrix of a function is the transpose of the Jacobian matrix of the gradient of the function ; that is:

Applications

Inflection points

If is a homogeneous polynomial in three variables, the equation is the implicit equation of a plane projective curve. The inflection points of the curve are exactly the non-singular points where the Hessian determinant is zero. It follows by Bézout's theorem that a cubic plane curve has at most 9 inflection points, since the Hessian determinant is a polynomial of degree 3.

Second-derivative test

The Hessian matrix of a convex function is positive semi-definite. Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows:

If the Hessian is positive-definite at then attains an isolated local minimum at If the Hessian is negative-definite at then attains an isolated local maximum at If the Hessian has both positive and negative eigenvalues, then is a saddle point for Otherwise the test is inconclusive. This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite.

For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point). However, more can be said from the point of view of Morse theory.

The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then is a local minimum, and if it is negative, then is a local maximum; if it is zero, then the test is inconclusive. In two variables, the determinant can be used, because the determinant is the product of the eigenvalues. If it is positive, then the eigenvalues are both positive, or both negative. If it is negative, then the two eigenvalues have different signs. If it is zero, then the second-derivative test is inconclusive.

Equivalently, the second-order conditions that are sufficient for a local minimum or maximum can be expressed in terms of the sequence of principal (upper-leftmost) minors (determinants of sub-matrices) of the Hessian; these conditions are a special case of those given in the next section for bordered Hessians for constrained optimization—the case in which the number of constraints is zero. Specifically, the sufficient condition for a minimum is that all of these principal minors be positive, while the sufficient condition for a maximum is that the minors alternate in sign, with the minor being negative.

Critical points

If the gradient (the vector of the partial derivatives) of a function is zero at some point then has a critical point (or stationary point ) at The determinant of the Hessian at is called, in some contexts, a discriminant. If this determinant is zero then is called a degenerate critical point of or a non-Morse critical point of Otherwise it is non-degenerate, and called a Morse critical point of

The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4]

The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature. (See Gaussian curvature § Relation to principal curvatures.)

Use in optimization

Hessian matrices are used in large-scale optimization problems within Newton-type methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function. That is, where is the gradient Computing and storing the full Hessian matrix takes memory, which is infeasible for high-dimensional functions such as the loss functions of neural nets, conditional random fields, and other statistical models with large numbers of parameters. For such situations, truncated-Newton and quasi-Newton algorithms have been developed. The latter family of algorithms use approximations to the Hessian; one of the most popular quasi-Newton algorithms is BFGS. [5]

Such approximations may use the fact that an optimization algorithm uses the Hessian only as a linear operator and proceed by first noticing that the Hessian also appears in the local expansion of the gradient:

Letting for some scalar this gives that is, so if the gradient is already computed, the approximate Hessian can be computed by a linear (in the size of the gradient) number of scalar operations. (While simple to program, this approximation scheme is not numerically stable since has to be made small to prevent error due to the term, but decreasing it loses precision in the first term. [6] )

Notably regarding Randomized Search Heuristics, the evolution strategy's covariance matrix adapts to the inverse of the Hessian matrix, up to a scalar factor and small random fluctuations. This result has been formally proven for a single-parent strategy and a static model, as the population size increases, relying on the quadratic approximation. [7]

Other applications

The Hessian matrix is commonly used for expressing image processing operators in image processing and computer vision (see the Laplacian of Gaussian (LoG) blob detector, the determinant of Hessian (DoH) blob detector and scale space). It can be used in normal mode analysis to calculate the different molecular frequencies in infrared spectroscopy. [8] It can also be used in local sensitivity and statistical diagnostics. [9]

Generalizations

Bordered Hessian

A bordered Hessian is used for the second-derivative test in certain constrained optimization problems. Given the function considered previously, but adding a constraint function such that the bordered Hessian is the Hessian of the Lagrange function : [10]

If there are, say, constraints then the zero in the upper-left corner is an block of zeros, and there are border rows at the top and border columns at the left.

The above rules stating that extrema are characterized (among critical points with a non-singular Hessian) by a positive-definite or negative-definite Hessian cannot apply here since a bordered Hessian can neither be negative-definite nor positive-definite, as if is any vector whose sole non-zero entry is its first.

The second derivative test consists here of sign restrictions of the determinants of a certain set of submatrices of the bordered Hessian. [11] Intuitively, the constraints can be thought of as reducing the problem to one with free variables. (For example, the maximization of subject to the constraint can be reduced to the maximization of without constraint.)

Specifically, sign conditions are imposed on the sequence of leading principal minors (determinants of upper-left-justified sub-matrices) of the bordered Hessian, for which the first leading principal minors are neglected, the smallest minor consisting of the truncated first rows and columns, the next consisting of the truncated first rows and columns, and so on, with the last being the entire bordered Hessian; if is larger than then the smallest leading principal minor is the Hessian itself. [12] There are thus minors to consider, each evaluated at the specific point being considered as a candidate maximum or minimum. A sufficient condition for a local maximum is that these minors alternate in sign with the smallest one having the sign of A sufficient condition for a local minimum is that all of these minors have the sign of (In the unconstrained case of these conditions coincide with the conditions for the unbordered Hessian to be negative definite or positive definite respectively).

Vector-valued functions

If is instead a vector field that is, then the collection of second partial derivatives is not a matrix, but rather a third-order tensor. This can be thought of as an array of Hessian matrices, one for each component of : This tensor degenerates to the usual Hessian matrix when

Generalization to the complex case

In the context of several complex variables, the Hessian may be generalized. Suppose and write Identifying with , the normal "real" Hessian is a matrix. As the object of study in several complex variables are holomorphic functions, that is, solutions to the n-dimensional Cauchy–Riemann conditions, we usually look on the part of the Hessian that contains information invariant under holomorphic changes of coordinates. This "part" is the so-called complex Hessian, which is the matrix Note that if is holomorphic, then its complex Hessian matrix is identically zero, so the complex Hessian is used to study smooth but not holomorphic functions, see for example Levi pseudoconvexity. When dealing with holomorphic functions, we could consider the Hessian matrix

Generalizations to Riemannian manifolds

Let be a Riemannian manifold and its Levi-Civita connection. Let be a smooth function. Define the Hessian tensor by where this takes advantage of the fact that the first covariant derivative of a function is the same as its ordinary differential. Choosing local coordinates gives a local expression for the Hessian as where are the Christoffel symbols of the connection. Other equivalent forms for the Hessian are given by

See also

Related Research Articles

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature. They are named after Carl Gustav Jacob Jacobi.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

<span class="mw-page-title-main">Curvilinear coordinates</span> Coordinate system whose directions vary in space

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Corner detection</span> Approach used in computer vision systems

Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, image registration, video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection.

In applied mathematics, polyharmonic splines are used for function approximation and data interpolation. They are very useful for interpolating and fitting scattered data in many dimensions. Special cases include thin plate splines and natural cubic splines in one dimension.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References

    1. Binmore, Ken; Davies, Joan (2007). Calculus Concepts and Methods. Cambridge University Press. p. 190. ISBN   978-0-521-77541-0. OCLC   717598615.
    2. Callahan, James J. (2010). Advanced Calculus: A Geometric View. Springer Science & Business Media. p. 248. ISBN   978-1-4419-7332-0.
    3. Casciaro, B.; Fortunato, D.; Francaviglia, M.; Masiello, A., eds. (2011). Recent Developments in General Relativity. Springer Science & Business Media. p. 178. ISBN   9788847021136.
    4. Domenico P. L. Castrigiano; Sandra A. Hayes (2004). Catastrophe theory. Westview Press. p. 18. ISBN   978-0-8133-4126-2.
    5. Nocedal, Jorge; Wright, Stephen (2000). Numerical Optimization. Springer Verlag. ISBN   978-0-387-98793-4.
    6. Pearlmutter, Barak A. (1994). "Fast exact multiplication by the Hessian" (PDF). Neural Computation. 6 (1): 147–160. doi:10.1162/neco.1994.6.1.147. S2CID   1251969.
    7. Shir, O.M.; A. Yehudayoff (2020). "On the covariance-Hessian relation in evolution strategies". Theoretical Computer Science. 801. Elsevier: 157–174. arXiv: 1806.03674 . doi: 10.1016/j.tcs.2019.09.002 .
    8. Mott, Adam J.; Rez, Peter (December 24, 2014). "Calculation of the infrared spectra of proteins". European Biophysics Journal. 44 (3): 103–112. doi:10.1007/s00249-014-1005-6. ISSN   0175-7571. PMID   25538002. S2CID   2945423.
    9. Liu, Shuangzhe; Leiva, Victor; Zhuang, Dan; Ma, Tiefeng; Figueroa-Zúñiga, Jorge I. (March 2022). "Matrix differential calculus with applications in the multivariate linear model and its diagnostics". Journal of Multivariate Analysis. 188: 104849. doi: 10.1016/j.jmva.2021.104849 .
    10. Hallam, Arne (October 7, 2004). "Econ 500: Quantitative Methods in Economic Analysis I" (PDF). Iowa State.
    11. Neudecker, Heinz; Magnus, Jan R. (1988). Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: John Wiley & Sons. p. 136. ISBN   978-0-471-91516-4.
    12. Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (Third ed.). McGraw-Hill. p.  386. ISBN   978-0-07-010813-4.

    Further reading