Differentiation rules

Last updated

This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

Contents

Elementary rules of differentiation

Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined [1] [2] — including the case of complex numbers (C). [3]

Constant term rule

For any value of , where , if is the constant function given by , then . [4]

Proof

Let and . By the definition of the derivative,

This shows that the derivative of any constant function is 0.

Intuitive (geometric) explanation

The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and it's angle is zero.

In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash-dot, negative where red and dashed, and zero where black and solid. Tangent function animation.gif
At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.

Differentiation is linear

For any functions and and any real numbers and , the derivative of the function with respect to is:

In Leibniz's notation this is written as:

Special cases include:

The product rule

For the functions and , the derivative of the function with respect to is

In Leibniz's notation this is written

The chain rule

The derivative of the function is

In Leibniz's notation, this is written as:

often abridged to

Focusing on the notion of maps, and the differential being a map , this is written in a more concise way as:

The inverse function rule

If the function f has an inverse function g, meaning that and then

In Leibniz notation, this is written as

Power laws, polynomials, quotients, and reciprocals

The polynomial or elementary power rule

If , for any real number then

When this becomes the special case that if then

Combining the power rule with the sum and constant multiple rules permits the computation of the derivative of any polynomial.

The reciprocal rule

The derivative of for any (nonvanishing) function f is:

wherever f is non-zero.

In Leibniz's notation, this is written

The reciprocal rule can be derived either from the quotient rule, or from the combination of power rule and chain rule.

The quotient rule

If f and g are functions, then:

wherever g is nonzero.

This can be derived from the product rule and the reciprocal rule.

Generalized power rule

The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g,

wherever both sides are well defined.

Special cases

Derivatives of exponential and logarithmic functions

the equation above is true for all c, but the derivative for yields a complex number.

the equation above is also true for all c, but yields a complex number if .

where is the Lambert W function

Logarithmic derivatives

The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule):

wherever f is positive.

Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.[ citation needed ]

Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified expression for taking derivatives.

Derivatives of trigonometric functions

The derivatives in the table above are for when the range of the inverse secant is and when the range of the inverse cosecant is

It is common to additionally define an inverse tangent function with two arguments, Its value lies in the range and reflects the quadrant of the point For the first and fourth quadrant (i.e. ) one has Its partial derivatives are

Derivatives of hyperbolic functions

See Hyperbolic functions for restrictions on these derivatives.

Derivatives of special functions

Gamma function
with being the digamma function, expressed by the parenthesized expression to the right of in the line above.
Riemann zeta function

Derivatives of integrals

Suppose that it is required to differentiate with respect to x the function

where the functions and are both continuous in both and in some region of the plane, including , and the functions and are both continuous and both have continuous derivatives for . Then for :

This formula is the general form of the Leibniz integral rule and can be derived using the fundamental theorem of calculus.

Derivatives to nth order

Some rules exist for computing the n-th derivative of functions, where n is a positive integer. These include:

Faà di Bruno's formula

If f and g are n-times differentiable, then

where and the set consists of all non-negative integer solutions of the Diophantine equation .

General Leibniz rule

If f and g are n-times differentiable, then

See also

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

The derivative is a fundamental tool of calculus that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

<span class="mw-page-title-main">Taylor series</span> Mathematical approximation of a function

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

A finite difference is a mathematical expression of the form f (x + b) − f (x + a). If a finite difference is divided by ba, one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

In calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives.

<span class="mw-page-title-main">Inverse function rule</span> Calculus identity

In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of is denoted as , where if and only if , then the inverse function rule is, in Lagrange's notation,

In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Product rule</span> Formula for the derivative of a product

In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

In mathematics, the exponential function can be characterized in many ways. The following characterizations (definitions) are most common. This article discusses why each characterization makes sense, and why they are all equivalent to each other. As a special case of these considerations, it will be demonstrated that the three most common definitions for the mathematical constant e are equivalent to each other.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f,

In mathematics, integrals of inverse functions can be computed by means of a formula that expresses the antiderivatives of the inverse of a continuous and invertible function , in terms of and an antiderivative of . This formula was published in 1905 by Charles-Ange Laisant.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References

  1. Calculus (5th edition), F. Ayres, E. Mendelson, Schaum's Outline Series, 2009, ISBN   978-0-07-150861-2.
  2. Advanced Calculus (3rd edition), R. Wrede, M.R. Spiegel, Schaum's Outline Series, 2010, ISBN   978-0-07-162366-7.
  3. Complex Variables, M.R. Spiegel, S. Lipschutz, J.J. Schiller, D. Spellman, Schaum's Outlines Series, McGraw Hill (USA), 2009, ISBN   978-0-07-161569-3
  4. "Differentiation Rules". University of Waterloo – CEMC Open Courseware. Retrieved 3 May 2022.

Sources and further reading

These rules are given in many books, both on elementary and advanced calculus, in pure and applied mathematics. Those in this article (in addition to the above references) can be found in: