In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers.
The theory of complex-valued numerical functions on the p-adic numbers is part of the theory of locally compact groups. The usual meaning taken for p-adic analysis is the theory of p-adic-valued functions on spaces of interest.
Applications of p-adic analysis have mainly been in number theory, where it has a significant role in diophantine geometry and diophantine approximation. Some applications have required the development of p-adic functional analysis and spectral theory. In many ways p-adic analysis is less subtle than classical analysis, since the ultrametric inequality means, for example, that convergence of infinite series of p-adic numbers is much simpler. Topological vector spaces over p-adic fields show distinctive features; for example aspects relating to convexity and the Hahn–Banach theorem are different.
Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value. [1]
Mahler's theorem, introduced by Kurt Mahler, [2] expresses continuous p-adic functions in terms of polynomials.
In any field of characteristic 0, one has the following result. Let
be the forward difference operator. Then for polynomial functions f we have the Newton series:
where
is the kth binomial coefficient polynomial.
Over the field of real numbers, the assumption that the function f is a polynomial can be weakened, but it cannot be weakened all the way down to mere continuity.
Mahler proved the following result:
Mahler's theorem: If f is a continuous p-adic-valued function on the p-adic integers then the same identity holds.
Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a polynomial equation has a simple root modulo a prime number p, then this root corresponds to a unique root of the same equation modulo any higher power of p, which can be found by iteratively "lifting" the solution modulo successive powers of p. More generally it is used as a generic name for analogues for complete commutative rings (including p-adic fields in particular) of the Newton method for solving equations. Since p-adic analysis is in some ways simpler than real analysis, there are relatively easy criteria guaranteeing a root of a polynomial.
To state the result, let be a polynomial with integer (or p-adic integer) coefficients, and let m,k be positive integers such that m ≤ k. If r is an integer such that
then there exists an integer s such that
Furthermore, this s is unique modulo pk+m, and can be computed explicitly as
Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each different prime number. This is handled by examining the equation in the completions of the rational numbers: the real numbers and the p-adic numbers. A more formal version of the Hasse principle states that certain types of equations have a rational solution if and only if they have a solution in the real numbers and in the p-adic numbers for each prime p.
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.
In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.
In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as
In number theory, Euler's theorem states that, if n and a are coprime positive integers, then is congruent to modulo n, where denotes Euler's totient function; that is
This article collects together a variety of proofs of Fermat's little theorem, which states that
In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely,
In theoretical computer science and cryptography, a trapdoor function is a function that is easy to compute in one direction, yet difficult to compute in the opposite direction without special information, called the "trapdoor". Trapdoor functions are a special case of one-way functions and are widely used in public-key cryptography.
In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, the factorial satisfies
In mathematics, an automorphic number is a natural number in a given number base whose square "ends" in the same digits as the number itself.
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second-fastest method known. It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.
In mathematics, Wolstenholme's theorem states that for a prime number , the congruence
In number theory, a branch of mathematics, the Carmichael functionλ(n) of a positive integer n is the smallest member of the set of positive integers m having the property that
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.
In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:
Schoof's algorithm is an efficient algorithm to count points on elliptic curves over finite fields. The algorithm has applications in elliptic curve cryptography where it is important to know the number of points to judge the difficulty of solving the discrete logarithm problem in the group of points on an elliptic curve.
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as
In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).
In number theory, Berlekamp's root finding algorithm, also called the Berlekamp–Rabin algorithm, is the probabilistic method of finding roots of polynomials over the field with elements. The method was discovered by Elwyn Berlekamp in 1970 as an auxiliary to the algorithm for polynomial factorization over finite fields. The algorithm was later modified by Rabin for arbitrary finite fields in 1979. The method was also independently discovered before Berlekamp by other researchers.
Theorem 1 (Ostrowski). Every nontrivial norm ‖ ‖ on is equivalent to | |p for some prime p or for p = ∞.