Algebra of physical space

Last updated

In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector (3-dimensional vector plus a 1-dimensional scalar).

Contents

The Clifford algebra Cl3,0(R) has a faithful representation, generated by Pauli matrices, on the spin representation C2; further, Cl3,0(R) is isomorphic to the even subalgebra Cl[0]
3,1
(R) of the Clifford algebra Cl3,1(R).

APS can be used to construct a compact, unified and geometrical formalism for both classical and quantum mechanics.

APS should not be confused with spacetime algebra (STA), which concerns the Clifford algebra Cl1,3(R) of the four-dimensional Minkowski spacetime.

Special relativity

Spacetime position paravector

In APS, the spacetime position is represented as the paravector where the time is given by the scalar part x0 = t, and e1, e2, e3 are the standard basis for position space. Throughout, units such that c = 1 are used, called natural units. In the Pauli matrix representation, the unit basis vectors are replaced by the Pauli matrices and the scalar part by the identity matrix. This means that the Pauli matrix representation of the space-time position is

Lorentz transformations and rotors

The restricted Lorentz transformations that preserve the direction of time and include rotations and boosts can be performed by an exponentiation of the spacetime rotation biparavector W

In the matrix representation, the Lorentz rotor is seen to form an instance of the SL(2, C) group (special linear group of degree 2 over the complex numbers), which is the double cover of the Lorentz group. The unimodularity of the Lorentz rotor is translated in the following condition in terms of the product of the Lorentz rotor with its Clifford conjugation

This Lorentz rotor can be always decomposed in two factors, one Hermitian B = B, and the other unitary R = R−1, such that

The unitary element R is called a rotor because this encodes rotations, and the Hermitian element B encodes boosts.

Four-velocity paravector

The four-velocity, also called proper velocity, is defined as the derivative of the spacetime position paravector with respect to proper time τ:

This expression can be brought to a more compact form by defining the ordinary velocity as and recalling the definition of the gamma factor: so that the proper velocity is more compactly:

The proper velocity is a positive unimodular paravector, which implies the following condition in terms of the Clifford conjugation

The proper velocity transforms under the action of the Lorentz rotorL as

Four-momentum paravector

The four-momentum in APS can be obtained by multiplying the proper velocity with the mass as with the mass shell condition translated into

Classical electrodynamics

Electromagnetic field, potential, and current

The electromagnetic field is represented as a bi-paravector F: with the Hermitian part representing the electric field E and the anti-Hermitian part representing the magnetic field B. In the standard Pauli matrix representation, the electromagnetic field is:

The source of the field F is the electromagnetic four-current: where the scalar part equals the electric charge density ρ, and the vector part the electric current density j. Introducing the electromagnetic potential paravector defined as: in which the scalar part equals the electric potential ϕ, and the vector part the magnetic potential A. The electromagnetic field is then also: The field can be split into electric and magnetic components. Here, and F is invariant under a gauge transformation of the form where is a scalar field.

The electromagnetic field is covariant under Lorentz transformations according to the law

Maxwell's equations and the Lorentz force

The Maxwell equations can be expressed in a single equation: where the overbar represents the Clifford conjugation.

The Lorentz force equation takes the form

Electromagnetic Lagrangian

The electromagnetic Lagrangian is which is a real scalar invariant.

Relativistic quantum mechanics

The Dirac equation, for an electrically charged particle of mass m and charge e, takes the form: where e3 is an arbitrary unitary vector, and A is the electromagnetic paravector potential as above. The electromagnetic interaction has been included via minimal coupling in terms of the potential A.

Classical spinor

The differential equation of the Lorentz rotor that is consistent with the Lorentz force is such that the proper velocity is calculated as the Lorentz transformation of the proper velocity at rest which can be integrated to find the space-time trajectory with the additional use of

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

<span class="mw-page-title-main">Shear stress</span> Component of stress coplanar with a material cross section

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While the components of the contracted quantities may change under Lorentz transformations, the Lorentz scalars remain unchanged.

The name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

Textbooks

= Articles=