× | 1 | i | j | k |
---|---|---|---|---|
1 | 1 | i | j | k |
i | i | −1 | k | −j |
j | j | −k | 1 | −i |
k | k | j | i | 1 |
In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.
After introduction in the 20th century of coordinate-free definitions of rings and algebras, it was proved that the algebra of split-quaternions is isomorphic to the ring of the 2×2 real matrices. So the study of split-quaternions can be reduced to the study of real matrices, and this may explain why there are few mentions of split-quaternions in the mathematical literature of the 20th and 21st centuries.
The split-quaternions are the linear combinations (with real coefficients) of four basis elements 1, i, j, k that satisfy the following product rules:
By associativity, these relations imply
and also ijk = 1.
So, the split-quaternions form a real vector space of dimension four with {1, i, j, k} as a basis. They form also a noncommutative ring, by extending the above product rules by distributivity to all split-quaternions.
Let consider the square matrices
They satisfy the same multiplication table as the corresponding split-quaternions. As these matrices form a basis of the two-by-two matrices, the unique linear function that maps 1, i, j, k to (respectively) induces an algebra isomorphism from the split-quaternions to the two-by-two real matrices.
The above multiplication rules imply that the eight elements 1, i, j, k, −1, −i, −j, −k form a group under this multiplication, which is isomorphic to the dihedral group D4, the symmetry group of a square. In fact, if one considers a square whose vertices are the points whose coordinates are 0 or 1, the matrix is the clockwise rotation of the quarter of a turn, is the symmetry around the first diagonal, and is the symmetry around the x axis.
Like the quaternions introduced by Hamilton in 1843, they form a four dimensional real associative algebra. But like the real algebra of 2×2 matrices – and unlike the real algebra of quaternions – the split-quaternions contain nontrivial zero divisors, nilpotent elements, and idempotents. (For example, 1/2(1 + j) is an idempotent zero-divisor, and i − j is nilpotent.) As an algebra over the real numbers, the algebra of split-quaternions is isomorphic to the algebra of 2×2 real matrices by the above defined isomorphism.
This isomorphism allows identifying each split-quaternion with a 2×2 matrix. So every property of split-quaternions corresponds to a similar property of matrices, which is often named differently.
The conjugate of a split-quaternion q = w + xi + yj + zk, is q∗ = w − xi − yj − zk. In term of matrices, the conjugate is the cofactor matrix obtained by exchanging the diagonal entries and changing the sign of the other two entries.
The product of a split-quaternion with its conjugate is the isotropic quadratic form:
which is called the norm of the split-quaternion or the determinant of the associated matrix.
The real part of a split-quaternion q = w + xi + yj + zk is w = (q∗ + q)/2. It equals the trace of associated matrix.
The norm of a product of two split-quaternions is the product of their norms. Equivalently, the determinant of a product of matrices is the product of their determinants. This property means that split-quaternions form a composition algebra. As there are nonzero split-quaternions having a zero norm, split-quaternions form a "split composition algebra" – hence their name.
A split-quaternion with a nonzero norm has a multiplicative inverse, namely q∗/N(q). In terms of matrices, this is equivalent to the Cramer rule that asserts that a matrix is invertible if and only its determinant is nonzero, and, in this case, the inverse of the matrix is the quotient of the cofactor matrix by the determinant.
The isomorphism between split-quaternions and 2×2 real matrices shows that the multiplicative group of split-quaternions with a nonzero norm is isomorphic with and the group of split quaternions of norm 1 is isomorphic with
Geometrically, the split-quaternions can be compared to Hamilton's quaternions as pencils of planes. In both cases the real numbers form the axis of a pencil. In Hamilton quaternions there is a sphere of imaginary units, and any pair of antipodal imaginary units generates a complex plane with the real line. For split-quaternions there are hyperboloids of hyperbolic and imaginary units that generate split-complex or ordinary complex planes, as described below in § Stratification.
There is a representation of the split-quaternions as a unital associative subalgebra of the 2×2 matrices with complex entries. This representation can be defined by the algebra homomorphism that maps a split-quaternion w + xi + yj + zk to the matrix
Here, i (italic) is the imaginary unit, not to be confused with the split quaternion basis element i (upright roman).
The image of this homomorphism is the matrix ring formed by the matrices of the form
where the superscript denotes a complex conjugate.
This homomorphism maps respectively the split-quaternions i, j, k on the matrices
The proof that this representation is an algebra homomorphism is straightforward but requires some boring computations, which can be avoided by starting from the expression of split-quaternions as 2×2 real matrices, and using matrix similarity. Let S be the matrix
Then, applied to the representation of split-quaternions as 2×2 real matrices, the above algebra homomorphism is the matrix similarity.
It follows almost immediately that for a split quaternion represented as a complex matrix, the conjugate is the matrix of the cofactors, and the norm is the determinant.
With the representation of split quaternions as complex matrices. the matrices of quaternions of norm 1 are exactly the elements of the special unitary group SU(1,1). This is used for in hyperbolic geometry for describing hyperbolic motions of the Poincaré disk model. [1]
Split-quaternions may be generated by modified Cayley–Dickson construction [2] similar to the method of L. E. Dickson and Adrian Albert. for the division algebras C, H, and O. The multiplication rule is used when producing the doubled product in the real-split cases. The doubled conjugate so that If a and b are split-complex numbers and split-quaternion
then
In this section, the real subalgebras generated by a single split-quaternion are studied and classified.
Let p = w + xi + yj + zk be a split-quaternion. Its real part is w = 1/2(p + p*). Let q = p – w = 1/2(p – p*) be its nonreal part. One has q* = –q, and therefore It follows that p2 is a real number if and only p is either a real number (q = 0 and p = w) or a purely nonreal split quaternion (w = 0 and p = q).
The structure of the subalgebra generated by p follows straightforwardly. One has
and this is a commutative algebra. Its dimension is two except if p is real (in this case, the subalgebra is simply ).
The nonreal elements of whose square is real have the form aq with
Three cases have to be considered, which are detailed in the next subsections.
With above notation, if (that is, if q is nilpotent), then N(q) = 0, that is, This implies that there exist w and t in such that 0 ≤ t < 2π and
This is a parametrization of all split-quaternions whose nonreal part is nilpotent.
This is also a parameterization of these subalgebras by the points of a circle: the split-quaternions of the form form a circle; a subalgebra generated by a nilpotent element contains exactly one point of the circle; and the circle does not contain any other point.
The algebra generated by a nilpotent element is isomorphic to and to the plane of dual numbers.
This is the case where N(q) > 0. Letting one has
It follows that 1/nq belongs to the hyperboloid of two sheets of equation Therefore, there are real numbers n, t, u such that 0 ≤ t < 2π and
This is a parametrization of all split-quaternions whose nonreal part has a positive norm.
This is also a parameterization of the corresponding subalgebras by the pairs of opposite points of a hyperboloid of two sheets: the split-quaternions of the form form a hyperboloid of two sheets; a subalgebra generated by a split-quaternion with a nonreal part of positive norm contains exactly two opposite points on this hyperboloid, one on each sheet; and the hyperboloid does not contain any other point.
The algebra generated by a split-quaternion with a nonreal part of positive norm is isomorphic to and to the field of complex numbers.
This is the case where N(q) < 0. Letting one has
It follows that 1/nq belongs to the hyperboloid of one sheet of equation y2 + z2 − x2 = 1. Therefore, there are real numbers n, t, u such that 0 ≤ t < 2π and
This is a parametrization of all split-quaternions whose nonreal part has a negative norm.
This is also a parameterization of the corresponding subalgebras by the pairs of opposite points of a hyperboloid of one sheet: the split-quaternions of the form form a hyperboloid of one sheet; a subalgebra generated by a split-quaternion with a nonreal part of negative norm contains exactly two opposite points on this hyperboloid; and the hyperboloid does not contain any other point.
The algebra generated by a split-quaternion with a nonreal part of negative norm is isomorphic to and to the ring of split-complex numbers. It is also isomorphic (as an algebra) to by the mapping defined by
As seen above, the purely nonreal split-quaternions of norm –1, 1 and 0 form respectively a hyperboloid of one sheet, a hyperboloid of two sheets and a circular cone in the space of non real quaternions.
These surfaces are pairwise asymptote and do not intersect. Their complement consist of six connected regions:
This stratification can be refined by considering split-quaternions of a fixed norm: for every real number n ≠ 0 the purely nonreal split-quaternions of norm n form an hyperboloid. All these hyperboloids are asymptote to the above cone, and none of these surfaces intersect any other. As the set of the purely nonreal split-quaternions is the disjoint union of these surfaces, this provides the desired stratification.
Split quaternions have been applied to colour balance [3] The model refers to the Jordan algebra of symmetric matrices representing the algebra. The model reconciles trichromacy with Hering's opponency and uses the Cayley–Klein model of hyperbolic geometry for chromatic distances.
The coquaternions were initially introduced (under that name) [4] in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 Bibliography [5] of the Quaternion Society.
Alexander Macfarlane called the structure of split-quaternion vectors an exspherical system when he was speaking at the International Congress of Mathematicians in Paris in 1900. [6] Macfarlane considered the "hyperboloidal counterpart to spherical analysis" in a 1910 article "Unification and Development of the Principles of the Algebra of Space" in the Bulletin of the Quaternion Society. [7]
The unit sphere was considered in 1910 by Hans Beck. [8] For example, the dihedral group appears on page 419. The split-quaternion structure has also been mentioned briefly in the Annals of Mathematics . [9] [10]
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by H, or in blackboard bold by Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2.
In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. The terms pseudoinverse and generalized inverse are sometimes used as synonyms for the Moore–Penrose inverse of a matrix, but sometimes applied to other elements of algebraic structures which share some but not all properties expected for an inverse element.
In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.
In abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form
In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.
In abstract algebra, the biquaternions are the numbers w + xi + yj + zk, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix, both square and of the same size.
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.
In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.
In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.