Solenoid (mathematics)

Last updated
This page discusses a class of topological groups. For the wrapped loop of wire, see Solenoid.
The Smale-Williams solenoid. Smale-Williams Solenoid Large.png
The Smale-Williams solenoid.

In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms


(Si, fi),    fi: Si+1Si,    i 0,

where each Si is a circle and fi is the map that uniformly wraps the circle Si+1ni times (ni 2) around the circle Si. This construction can be carried out geometrically in the three-dimensional Euclidean space R3. A solenoid is a one-dimensional homogeneous indecomposable continuum that has the structure of a compact topological group.

In the special case where all ni have the same value n, so that the inverse system is determined by the multiplication by n self map of the circle, solenoids were first introduced by Vietoris for n = 2 and by van Dantzig for an arbitrary n. Such a solenoid arises as a one-dimensional expanding attractor, or Smale–Williams attractor, and forms an important example in the theory of hyperbolic dynamical systems.

Geometric construction and the Smale–Williams attractor

A solid torus wrapped twice around inside another solid torus in R Smale-Williams Solenoid.png
A solid torus wrapped twice around inside another solid torus in R
The first six steps in the construction of the Smale-Williams attractor. Solenoid.gif
The first six steps in the construction of the Smale-Williams attractor.

Each solenoid may be constructed as the intersection of a nested system of embedded solid tori in R3.

Fix a sequence of natural numbers {ni}, ni 2. Let T0 = S1×D be a solid torus. For each i 0, choose a solid torus Ti+1 that is wrapped longitudinally ni times inside the solid torus Ti. Then their intersection

is homeomorphic to the solenoid constructed as the inverse limit of the system of circles with the maps determined by the sequence {ni}.

Here is a variant of this construction isolated by Stephen Smale as an example of an expanding attractor in the theory of smooth dynamical systems. Denote the angular coordinate on the circle S1 by t (it is defined mod 2π) and consider the complex coordinate z on the two-dimensional unit disk D. Let f be the map of the solid torus T = S1×D into itself given by the explicit formula

This map is a smooth embedding of T into itself that preserves the foliation by meridional disks (the constants 1/2 and 1/4 are somewhat arbitrary, but it is essential that 1/4 < 1/2 and 1/4 + 1/2 < 1). If T is imagined as a rubber tube, the map f stretches it in the longitudinal direction, contracts each meridional disk, and wraps the deformed tube twice inside T with twisting, but without self-intersections. The hyperbolic set Λ of the discrete dynamical system (T, f) is the intersection of the sequence of nested solid tori described above, where Ti is the image of T under the ith iteration of the map f. This set is a one-dimensional (in the sense of topological dimension) attractor, and the dynamics of f on Λ has the following interesting properties:

General theory of solenoids and expanding attractors, not necessarily one-dimensional, was developed by R. F. Williams and involves a projective system of infinitely many copies of a compact branched manifold in place of the circle, together with an expanding self-immersion.

Pathological properties

Solenoids are compact metrizable spaces that are connected, but not locally connected or path connected. This is reflected in their pathological behavior with respect to various homology theories, in contrast with the standard properties of homology for simplicial complexes. In Čech homology, one can construct a non-exact long homology sequence using a solenoid. In Steenrod-style homology theories, [1] the 0th homology group of a solenoid may have a fairly complicated structure, even though a solenoid is a connected space.

See also

Related Research Articles

Homeomorphism Isomorphism of topological spaces in mathematics

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape, form, introduced to mathematics by Henri Poincaré in 1895.

Surface (topology) Two-dimensional manifold

In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solids; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.

3-sphere Mathematical object

In mathematics, a 3-sphere, or glome, is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. A 3-sphere is an example of a 3-manifold and an n-sphere.

Torus Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, to other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

Homotopy Continuous deformation between two continuous maps

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.

Horseshoe map

In the mathematics of chaos theory, a horseshoe map is any member of a class of chaotic maps of the square into itself. It is a core example in the study of dynamical systems. The map was introduced by Stephen Smale while studying the behavior of the orbits of the van der Pol oscillator. The action of the map is defined geometrically by squishing the square, then stretching the result into a long strip, and finally folding the strip into the shape of a horseshoe.

Circle group

In mathematics, the circle group, denoted by , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers

In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

Compact group Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology is compact. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

3-manifold A space that locally looks like Euclidean 3-dimensional space

In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

Solid torus 3-dimensional object

In mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product of the disk and the circle, endowed with the product topology.

Manifold Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n.

In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations.

In mathematics, specifically in the field of differential topology, Morse homology is a homology theory defined for any smooth manifold. It is constructed using the smooth structure and an auxiliary metric on the manifold, but turns out to be topologically invariant, and is in fact isomorphic to singular homology. Morse homology also serves as a model for the various infinite-dimensional generalizations known as Floer homology theories.

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, especially in the area of topology known as algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

In the mathematical field of point-set topology, a continuum is a nonempty compact connected metric space, or, less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the study of continua.


Further reading